Constructing a Saturated Absorption Spectroscopy System for Laser Locking

Camden Kasik
Motivation
Fine-Structure constant

• Fine-Structure constant
 • Fundamentally characterizes electromagnetic interactions of charged particles

• Advance interferometry measurements
 • Gravity gradients
 • Equivalence principle tests

• Test of Quantum Electrodynamics (QED) theory

• Best measurements
 • 0.25ppb Electron $g_e - 2$ [1]
 • 0.2ppb from cesium recoil [2]

• Our goals
 • 0.1ppb from recoil

Laser cooling

• Atomic beam
 • Oven with two holes

• Zeeman Slower
 • Doppler effect

• Magneto Optical Trap
 • In an ultrahigh vacuum

• Optical Dipole trap
 • Evaporative cooling
Laser cooling

• Atomic beam
 • Oven with two holes

• Zeeman Slower
 • Doppler effect

• Magneto Optical Trap
 • In an ultrahigh vacuum

• Optical Dipole trap
 • Evaporative cooling
Laser cooling

• Atomic beam
 • Oven with two holes

• Zeeman Slower
 • Doppler effect

• Magneto Optical Trap
 • In an ultrahigh vacuum

• Optical Dipole trap
 • Evaporative cooling
Our way of measuring it

• Recoil frequency method - Rate of phase evolution
• Bose Einstein Condensate (BEC) for low velocity distribution
 • Coherence
• Contrast Interferometer (CI)
• Bragg pulses for acceleration
 • Standing waves
 • Make diffraction grating

\[\alpha^2 = \frac{4 \pi R_{\infty}}{c} \frac{m}{m_e} \frac{\hbar}{m} \]
Our way of measuring it

\[\alpha^2 = \frac{4\pi R_\infty}{c} \frac{m}{m_e} \frac{\hbar}{m} \]

- Recoil frequency method - Rate of phase evolution
- Bose Einstein Condensate (BEC) for low velocity distribution
 - Coherence
- Contrast Interferometer (CI)
- Bragg pulses for acceleration
 - Standing waves
 - Make diffraction grating

Contrast Interferometer
Measuring the recoil frequency from phase

- Acceleration increases precision
- Recoil Frequency
 - What is this

\[\Phi(2T) = \frac{1}{2} n^2 \omega_{\text{recoil}} T + \phi_{\text{offset}} \]

\[\frac{\delta \omega_{\text{recoil}}}{\omega_{\text{recoil}}} = \frac{\delta \phi}{\frac{1}{2} n^2 \omega_{\text{recoil}} T \sqrt{M}} \]

- \(\Delta P = n\hbar k \)

\(T \) (ms)	Total Phase (rad)
0.990 | 28.0
0.995 | 31.0
1.000 | 34.0
1.005 | 37.0
1.010 | 40.0
1.015 | 43.0
1.020 | 46.0
1.025 | 49.0

Number of shots
Measuring the recoil frequency from phase

\(\omega_{\text{recoil}} = \frac{\hbar k_{\text{laser}}^2}{2m} \)

\(\alpha^2 = \frac{4\pi R_\infty}{c} \frac{m}{m_e} \frac{\hbar}{m} \)

\(\omega_{\text{recoil}} = \frac{\hbar k_{\text{laser}}^2}{2m} \)

\(\alpha^2 = \frac{4\pi R_\infty}{c} \frac{m}{m_e} \frac{\hbar}{m} \)
What I did

• Laser frequency stabilization

• Laser for cooling and diffraction beams

• Doppler effect

• $\omega_{recoil} = \frac{\hbar k_{laser}^2}{2m}$
What I did

- Laser frequency stabilization
 - Laser for cooling and diffraction beams
 - Doppler effect

\[\omega_{\text{recoil}} = \frac{\hbar k_{\text{laser}}}{2m} \]

Need on the order of a MHz
Saturated absorption spectroscopy

- Fixing Doppler broadening
- Probe beam is the one detected
Saturated absorption spectroscopy

- Fixing Doppler broadening

- Probe beam is the one detected

Saturated absorption spectroscopy

- Acousto Optical Modulator (AOM)
 - Shift frequency
 - Modulates frequency
 - RF to sound waves
- Mix modulation signal with transmission
- Error signal
 - Lock to negative slope at 0
Saturated absorption spectroscopy

- Acousto Optical Modulator (AOM)
 - Shift frequency
 - Modulates frequency
 - RF to sound waves
- Mix modulation signal with transmission
- Error signal
 - Lock to negative slope at 0
Problems

• 60Hz noise
 • Heater tape
 • Correct grounding
It Works!

About 6.3MHz with 10:1 signal to noise
What is next

• Use this instead of the old beat node system to continue main experiment

• Mount spectroscopy in 3x1 foot breadboard
Thanks

Linda Vilett
Cheryl McDaniel
Gray Rybka
Other contributions

• Polarization optimization