Metasurface-based spin-selective optical cavity

Michael Kopreski

College of William & Mary
University of Washington INT Physics REU
Advisor: Dr. Arka Majumdar

Wednesday, August 17, 2016
Outline

▶ Motivation
▶ Introduction to the problem
▶ Proposed cavity design
▶ Metasurface optics
▶ Conclusion
Goals and motivation

We seek a cavity which **differentiates between left- and right-handed light** within the cavity volume.

\[
\begin{pmatrix}
|H\rangle \\
|V\rangle \\
|L\rangle \\
|R\rangle
\end{pmatrix}
\]

Defined photon spin may facilitate:

- **spintronics**: exciton polariton with known spin
- **quantum information processing**
Goals and motivation

We seek a cavity which differentiates between left- and right-handed light within the cavity volume.

\[|H\rangle \quad \begin{pmatrix} \cdots & |R\rangle \\ |V\rangle \\ |L\rangle \\ |R\rangle \end{pmatrix} \quad |L\rangle \]

Defined photon spin may facilitate:

- spintronics: exciton polariton with known spin
Goals and motivation

We seek a cavity which **differentiates between left- and right-handed light** within the cavity volume.

\[
\begin{pmatrix}
|H\rangle \\
|V\rangle \\
|L\rangle \\
|R\rangle \\
\end{pmatrix}
\]

Defined photon spin may facilitate:

- spintronics: exciton polariton with known spin
- quantum information processing
Introduction to the problem

We may associate photon spin with a corresponding circular polarization.¹

Introduction to the problem

We may associate photon spin with a corresponding circular polarization.¹ We seek to explore circularly polarized light within an optical cavity.

Introduction to the problem

We may associate photon spin with a corresponding circular polarization.\(^1\) We seek to explore circularly polarized light within an optical cavity.

Related problem: spin-preserving mirror

Introduction to the problem

We may associate photon spin with a corresponding circular polarization.\(^1\) We seek to explore circularly polarized light within an optical cavity.

Related problem: spin-preserving mirror

For incident light normal to a good conductor, we have

\[
\left(\frac{E_{0R}}{E_{0I}} \right)_N = \frac{Z_2 \cos \theta_I - Z_1 \cos \theta_T}{Z_2 \cos \theta_I + Z_1 \cos \theta_T} \approx -1
\]

where \(Z_1, Z_2\) are the impedences of air and the conductor respectively, and \(Z_1 \gg |Z_2|\).

\(^1\)Simmons & Guttmann. States, waves, and photons. Addison-Wesley. (1970).
Introduction to the problem

We may associate photon spin with a corresponding circular polarization.1 We seek to explore circularly polarized light within an optical cavity.

Related problem: spin-preserving mirror

For incident light normal to a good conductor, we have

\[
\left(\frac{E_{0R}}{E_{0I}} \right)_N = \frac{Z_2 \cos \theta_l - Z_1 \cos \theta_T}{Z_2 \cos \theta_l + Z_1 \cos \theta_T} \approx -1
\]

where \(Z_1, Z_2 \) are the impedences of air and the conductor respectively, and \(Z_1 \gg |Z_2| \).

Hence, \(E_R \) gains a uniform \(\pi \) phase shift and is “reflected” with no preferred transverse axis.

1Simmons & Guttmann. States, waves, and photons. Addison-Wesley. (1970).
Introduction to the problem

Related problem: spin-preserving mirror
Quantities with handedness are not invariant under reflections.

In particular, for circularly polarized incident light,

\[|R\rangle \rightarrow |L\rangle; \quad |L\rangle \rightarrow |R\rangle \]

in the reflected basis.
Introduction to the problem

Related problem: spin-preserving mirror
Quantities with handedness are not invariant under reflections.

In particular, for circularly polarized incident light,

\[|R\rangle \rightarrow |L\rangle ; \quad |L\rangle \rightarrow |R\rangle \]

in the reflected basis.

It is useful to preserve one handedness in our cavity: hence, we may use a quarter wave plate preceding the mirror to “preserve” spin after reflection.
Proposed cavity design

We use birefringent materials to impose polarization-dependent path lengths.
Proposed cavity design

Some nice symmetries

Rotation:

180°
Proposed cavity design

Some nice symmetries

Rotation:

Reflection:
Proposed cavity design

For simplicity, consider the above cavity with planar mirrors. Behavior is entirely determined by propagation through free space and birefringent materials.
Proposed cavity design

For simplicity, consider the above cavity with planar mirrors. Behavior is entirely determined by propagation through free space and birefringent materials.

Defining the propagation operator
Let $|u(z)\hat{\kappa}\rangle$ be a state vector with a mode function $u(r,z)$ and transverse polarization vector $\hat{\kappa}$.
Proposed cavity design

For simplicity, consider the above cavity with planar mirrors. Behavior is entirely determined by propagation through free space and birefringent materials.

Defining the propagation operator
Let $|u(z) \hat{\kappa}\rangle$ be a state vector with a mode function $u(r, z)$ and transverse polarization vector $\hat{\kappa}$.

We define a propagation operator $\hat{U}(z)$ such that

(i) $|u(z) \hat{\kappa}\rangle = \hat{U}(z) |u(0) \hat{\kappa}\rangle$.

Proposed cavity design

For simplicity, consider the above cavity with planar mirrors. Behavior is entirely determined by propagation through free space and birefringent materials.

Defining the propagation operator

Let $|u(z)\hat{\kappa}\rangle$ be a state vector with a mode function $u(r, z)$ and transverse polarization vector $\hat{\kappa}$.

We define a propagation operator $\hat{U}(z)$ such that

(i) $|u(z)\hat{\kappa}\rangle = \hat{U}(z)|u(0)\hat{\kappa}\rangle$.

(ii) $\hat{U}(0) = 1$.
Proposed cavity design

For simplicity, consider the above cavity with planar mirrors. Behavior is entirely determined by propagation through free space and birefringent materials.

Defining the propagation operator
Let $|u(z) \hat{\kappa}\rangle$ be a state vector with a mode function $u(r, z)$ and transverse polarization vector $\hat{\kappa}$.

We define a propagation operator $\hat{U}(z)$ such that

(i) $|u(z) \hat{\kappa}\rangle = \hat{U}(z) |u(0) \hat{\kappa}\rangle$.
(ii) $\hat{U}(0) = 1$.
(iii) $[\hat{U}(z_1), \hat{U}(z_2)] = 0$.
Proposed cavity design

For simplicity, consider the above cavity with planar mirrors. Behavior is entirely determined by propagation through free space and birefringent materials.

Defining the propagation operator
Let $|u(z) \kappa\rangle$ be a **state vector** with a mode function $u(r, z)$ and transverse polarization vector κ.

We define a **propagation operator** $\hat{U}(z)$ such that

(i) $|u(z) \kappa\rangle = \hat{U}(z) |u(0) \kappa\rangle$.
(ii) $\hat{U}(0) = 1$.
(iii) $[\hat{U}(z_1), \hat{U}(z_2)] = 0$.
(iv) $\hat{U}(z_1)\hat{U}(z_2) = \hat{U}(z_1 + z_2)$.
Proposed cavity design

Defining transverse rotations

If two transverse polarizations \(\hat{\kappa}, \hat{\nu} \) are non-parallel, then some state \(|u_1(z)\hat{\kappa}\rangle + |u_2(z)\hat{\nu}\rangle \) effectively comprises a vector field.

For an orthonormal polarization basis \(\hat{\imath}, \hat{\jmath} \), denote

\[
|u(z)\rangle = (|u_1(z)\rangle \hat{\imath} + |u_2(z)\rangle \hat{\jmath}).
\]

Then we may define the expected local rotation operator,

\[
R(\theta) := \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.
\]
Proposed cavity design

Defining transverse rotations
If two transverse polarizations $\hat{\kappa}, \hat{\nu}$ are non-parallel, then some state $|u_1(z) \hat{\kappa}\rangle + |u_2(z) \hat{\nu}\rangle$ effectively comprises a vector field.
Proposed cavity design

Defining transverse rotations
If two transverse polarizations $\hat{\kappa}, \hat{\nu}$ are non-parallel, then some state $|u_1(z) \hat{\kappa}\rangle + |u_2(z) \hat{\nu}\rangle$ effectively comprises a vector field.

For an orthonormal polarization basis \hat{i}, \hat{j}, denote

$$|u(z)\rangle = \begin{pmatrix} u_1(z) \\ u_2(z) \end{pmatrix} := |u_1(z) \hat{i}\rangle + |u_2(z) \hat{j}\rangle.$$
Proposed cavity design

Defining transverse rotations

If two transverse polarizations $\hat{\kappa}, \hat{\nu}$ are non-parallel, then some state $|u_1(z) \hat{\kappa}\rangle + |u_2(z) \hat{\nu}\rangle$ effectively comprises a vector field.

For an orthonormal polarization basis \hat{i}, \hat{j}, denote

$$|u(z)\rangle = \begin{pmatrix} u_1(z) \\ u_2(z) \end{pmatrix} := |u_1(z) \hat{i}\rangle + |u_2(z) \hat{j}\rangle.$$

Then we may define the expected local rotation operator,

$$R(\theta) := \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$
Proposed cavity design

Hence we define propagation in some birefringent region aligned with our polarization basis

\[\hat{Q}(z_i, z_j) = \begin{pmatrix} \hat{U}(z_i) & 0 \\ 0 & \hat{U}(z_j) \end{pmatrix} \]
Proposed cavity design

Hence we define propagation in some birefringent region aligned with our polarization basis

\[
\hat{Q}(z_i, z_j) = \begin{pmatrix} \hat{U}(z_i) & 0 \\ 0 & \hat{U}(z_j) \end{pmatrix}
\]

and the cavity roundtrip operator follows:

\[
\hat{T} = \hat{Q}(\alpha + \delta, \alpha) R \left(\frac{\pi}{4} \right) \hat{Q}(2\beta, 0) R^\dagger \left(\frac{\pi}{4} \right) \ldots \\
\hat{Q}(\alpha + \delta, \alpha + \delta) R \left(\frac{\pi}{4} \right) \hat{Q}(2\beta, 0) R^\dagger \left(\frac{\pi}{4} \right) \hat{Q}(\alpha, \alpha + \delta)
\]
Proposed cavity design

\[\hat{T} = \frac{1}{2} \left(\hat{U}(4\alpha + 2\delta) + \hat{U}(4\alpha + 4\beta + 2\delta) \right) l_2 + \]

\[\frac{1}{2} \hat{U}(4\alpha) \left(\hat{U}(4\beta) - 1 \right) \left(\begin{array}{cc} 0 & \hat{U}(3\delta) \\ \hat{U}(\delta) & 0 \end{array} \right) \]
Proposed cavity design

\[\hat{T} = \frac{1}{2} \left(\hat{U}(4\alpha + 2\delta) + \hat{U}(4\alpha + 4\beta + 2\delta) \right) I_2 + \]

\[\frac{1}{2} \hat{U}(4\alpha) \left(\hat{U}(4\beta) - 1 \right) \begin{pmatrix} 0 & \hat{U}(3\delta) \\ \hat{U}(\delta) & 0 \end{pmatrix} \]

Hence, we find (normalized) eigenvectors of

\[|u_{\pm}\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} \pm \hat{U}(\delta) \\ 1 \end{pmatrix} |u(0)\rangle \]

with eigenvalues of

\[\frac{1}{2} \hat{U}(4\alpha + 2\delta) \left(1 + \hat{U}(4\beta) \pm \left(\hat{U}(4\beta) - 1 \right) \right) , \]
Proposed cavity design

\[\hat{T} = \frac{1}{2} \left(\hat{U}(4\alpha + 2\delta) + \hat{U}(4\alpha + 4\beta + 2\delta) \right) l_2 + \]

\[\frac{1}{2} \hat{U}(4\alpha) \left(\hat{U}(4\beta) - 1 \right) \begin{pmatrix} 0 & \hat{U}(3\delta) \\ \hat{U}(\delta) & 0 \end{pmatrix} \]

Hence, we find (normalized) eigenvectors of

\[|u_{\pm}\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} \pm \hat{U}(\delta) \\ 1 \end{pmatrix} |u(0)\rangle \]

with eigenvalues of

\[\frac{1}{2} \hat{U}(4\alpha + 2\delta) \left(1 + \hat{U}(4\beta) \pm \left(\hat{U}(4\beta) - 1 \right) \right), \]

that is,

\[\hat{U}(4\alpha + 4\beta + 2\delta), \quad \hat{U}(4\alpha + 2\delta) \]
Designing metasurface-based optics

Metasurfaces use quasi-periodic arrays of subwavelength structures to modify the phase of incident light.
Designing metasurface-based optics

Metasurfaces use quasi-periodic arrays of subwavelength structures to modify the phase of incident light.

A phase picture of optical elements
Designing metasurface-based optics

Metasurfaces use quasi-periodic arrays of subwavelength structures to modify the phase of incident light.

A phase picture of optical elements
Phase profile for a thin lens with focal length f:

$$\phi(r) = k \left(\sqrt{r^2 + f^2} - f \right)$$
Designing metasurface-based optics

Metasurfaces use quasi-periodic arrays of subwavelength structures to modify the phase of incident light.

A phase picture of optical elements
Phase profile for a thin lens with focal length f:

$$\phi(r) = k \left(\sqrt{r^2 + f^2} - f \right)$$

If we allow birefringence:
Half wave plate:

$$\phi_x = \pi; \quad \phi_y = 0$$

Quarter wave plate:

$$\phi_x = \frac{\pi}{2}; \quad \phi_y = 0$$
Designing metasurface-based optics

Arbabi et al. implement arrays of **elliptical, subwavelength high-contrast posts to exhibit birefringence.**

Designing metasurface-based optics

Arbabi et al. implement arrays of elliptical, subwavelength high-contrast posts to exhibit birefringence. The group claims the posts act as “weakly coupled low-quality factor resonators”. ²

Designing metasurface-based optics

Arbabi et al. implement arrays of elliptical, subwavelength high-contrast posts to exhibit birefringence. The group claims the posts act as “weakly coupled low-quality factor resonators”. ²

In practice, post parameters are found by optimizing over a given space of the following parameters:

- lattice constant
- post thickness
- major and minor post diameter

Designing metasurface-based optics

Arbabi et al. implement arrays of elliptical, subwavelength high-contrast posts to exhibit birefringence. The group claims the posts act as “weakly coupled low-quality factor resonators”. ²

In practice, post parameters are found by optimizing over a given space of the following parameters:

- lattice constant
- post thickness
- major and minor post diameter

RCWA is used to determine phase and amplitude for a given parameter set.

Designing metasurface-based optics
Designing metasurface-based optics
Designing metasurface-based optics

Silicon nitride-based metasurfaces

Figure: low-contrast metasurface optics (SEM).\(^3\) (a) lens, (b) vortex beam generator.

Further work

- Complete characterization of cavity modes
 - Transverse modes (cavity as system of coupled harmonic oscillators)
 - Explicit definition of propagation operator and mode functions
Further work

- Complete characterization of cavity modes
 - Transverse modes (cavity as system of coupled harmonic oscillators)
 - Explicit definition of propagation operator and mode functions
- Simulate elements, cavity with FDTD
Acknowledgements

I would like to thank Dr. Majumdar, Alan, and the NOISE Lab group for their guidance and support.

Thank you to the INT REU directors and administrators for all of their time and attention in support of this summer.