Overview

- QUDA Overview
- Single-GPU Wilson solver
- Multi-GPU strategy and performance
- Getting into QUDA
QUDA overview

- “QCD on CUDA” - http://lattice.github.com/quda
- Effort started at Boston University in 2008, now in wide use as the GPU backend for Chroma, MILC, and various home-grown codes.
- Provides:
 - Various solvers for several discretizations, including multi-GPU support and domain-decomposed (Schwarz) preconditioners.
 - Additional performance-critical routines needed for gauge field generation.
- Contributors welcome!
QUDA overview

• Implements most discretized Dirac operators
 – Wilson
 – Wilson-Clover
 – Twisted mass
 – Improve staggered (ASQTAD and HISQ)
 – Domain Wall
Collaborators and QUDA developers

- Ron Babich (NVIDIA)
- Kip Barros (LANL)
- Rich Brower (Boston University)
- Justin Foley (University of Utah)
- Joel Giedt (Rensselaer Polytechnic Institute)
- Steve Gottlieb (Indiana University)
- Bálint Joó (Jefferson Lab)
- Claudio Rebbi (Boston University)
- Guochun Shi (NCSA -> Google)
- Alexei Strelchenko (Cyprus Institute -> FNAL)
- Frank Winter (The University of Edinburgh)
USQCD software stack

(Many components developed under the DOE SciDAC program)
Steps in a lattice QCD calculation

1. Generate an ensemble of gluon field (“gauge”) configurations.
 - Produced in sequence, with hundreds needed per ensemble. This requires \(> O(10 \text{ Tflops}) \) sustained for several months (traditionally Crays, Blue Genes, etc.)
 - 50-90% of the runtime is in the solver.
Steps in a lattice QCD calculation

2. “Analyze” the configurations
 - Can be farmed out, assuming \(O(1 \text{ Tflops})\) per job.
 - 80-99% of the runtime is in the solver. GPUs have gained a lot of traction here.

\[
D_{ij}^{\alpha\beta}(x, y; U)\psi_j^\beta(y) = \eta^\alpha_i(x)
\]

or “\(Ax = b\)”
Krylov solvers

- (Conjugate gradients, BiCGstab, and friends)
- Search for the solution to $Ax = b$ in the subspace spanned by $\{b, Ab, A^2b, \ldots\}$.
- Upshot:
 - We need fast code to apply A to an arbitrary vector (called the $Dslash$ operation in LQCD).
 - ... as well as fast routines for vector addition, inner products, etc. (home-grown “BLAS”)

Thursday, August 23, 12
GPU Architecture: Two Main Components

- **Global memory**
 - Analogous to RAM in a CPU server
 - Accessible by both GPU and CPU
 - Currently up to 6 GB
 - Bandwidth currently up to 177 GB/s for Quadro and Tesla products
 - ECC on/off option for Quadro and Tesla products

- **Streaming Multiprocessors (SMs)**
 - Perform the actual computations
 - Each SM has its own:
 - Control units, registers, execution pipelines, caches
GPU Architecture - Fermi: Streaming Multiprocessor (SM)

- 32 CUDA Cores per SM
 - 32 fp32 ops/clock
 - 16 fp64 ops/clock
 - 32 int32 ops/clock
- 2 warp schedulers
 - Up to 1536 threads concurrently
- 4 special-function units
- 64KB shared mem + L1 cache
- 32K 32-bit registers
- 63 registers-per-thread limit
 - Exceeding this will cause variables to spill into gmem
GPU Architecture - Fermi: CUDA Core

- **Floating point & Integer unit**
 - IEEE 754-2008 floating-point standard
 - Fused multiply-add (FMA) instruction for both single and double precision

- **Logic unit**
- **Move, compare unit**
- **Branch unit**
A parallel function that runs on the GPU is called a kernel.

A kernel is launched as a grid of blocks of threads.

- `blockIdx` and `threadIdx` are 3D built-in variables used to identify threads:
 - `threadIdx`
 - `blockIdx`
 - `blockDim`
 - `gridDim`
void saxpy(int n, float a,
 float *x, float *y)
{
 for (int i = 0; i < n; ++i)
 y[i] = a*x[i] + y[i];
}

int N = 1<<20;

// Perform SAXPY on 1M elements
saxpy(N, 2.0, x, y);

__global__
void saxpy(int n, float a,
 float *x, float *y)
{
 int i = blockIdx.x*blockDim.x + threadIdx.x;
 if (i < n) y[i] = a*x[i] + y[i];
}

int N = 1<<20;
cudaMemcpy(d_x, x, N, cudaMemcpyHostToDevice);
cudaMemcpy(d_y, y, N, cudaMemcpyHostToDevice);

// Perform SAXPY on 1M elements
saxpy<<<4096,256>>>(N, 2.0, d_x, d_y);
cudaMemcpy(y, d_y, N, cudaMemcpyDeviceToHost);

Disparity worse with every generation

- All architectures have this problem
- Processors get wider
- Memory hierarchy gets deeper
Memory Hierarchy

~ 3+3 GB/s

QDR Infiniband Fabric
Single GPU Wilson Solver
Krylov Solver Implementation

- Complete solver **must** be on GPU
 - Transfer b to GPU
 - Solve $Mx=b$
 - Transfer x to CPU
- Time-critical kernel is the mat-vec
 - Applying the Dirac operator to a spinor field
- Also require BLAS level-1 type operations
 - AXPY operations: $b += ax$ - just like yesterday’s vector addition
 - NORM operations: $c = (b, b)$

```
while ($|r_k| > \varepsilon$) {
    $\beta_k = (r_k, r_k)/(r_{k-1}, r_{k-1})$
    $p_{k+1} = r_k - \beta_k p_k$
    $\alpha = (r_k, r_k)/(p_{k+1}, Ap_{k+1})$
    $r_{k+1} = r_k - \alpha Ap_{k+1}$
    $x_{k+1} = x_k + \alpha p_{k+1}$
    $k = k+1$
}
```
QUDA - General Strategy

• Assign a single space-time point to each thread -> $V = XYZT$ threads
 • Map 4-d space-time index to a 1-d thread index

    ```c
    int gindex = threadIdx.x + blockIdx.x*blockDim.x
    ```
 • Reverse mapping obtained from modular arithmetic

    ```c
    gindex = (((t*Z+z)*Y+y)*X+x
    ```
 • $V = 24^4 \Rightarrow 3.3 \times 10^6$ threads
 • Fine-grained parallelization

• Maximize performance
 • Field reordering
 • Exploit physical symmetries
 • Mixed-precision methods
Wilson Matrix

\[M_{x,x'} = -\frac{1}{2} \sum_{\mu=1}^{4} (P^{-\mu} \otimes U_{x}^{\mu} \delta_{x+\hat{\mu},x'} + P^{+\mu} \otimes U_{x-\hat{\mu}}^{\mu\dagger} \delta_{x-\hat{\mu},x'}) + (4 + m) \delta_{x,x'} \]

\[\equiv -\frac{1}{2} D_{x,x'} + (4 + m) \delta_{x,x'} \]

Dirac spin projector matrices (4x4 spin space)

SU(3) QCD gauge field (3x3 color space)

m quark mass parameter

Nearest neighbor Local
Wilson Matrix

\[
M_{x,x'} = -\frac{1}{2} \sum_{\mu=1}^{4} \left(P^{-\mu} \otimes U_{x}^{\mu} \delta_{x+\hat{\mu},x'} + P^{+\mu} \otimes U_{x-\hat{\mu}}^{\mu\dagger} \delta_{x-\hat{\mu},x'} \right) + (4 + m) \delta_{x,x'}
\]

\[
\equiv -\frac{1}{2} D_{x,x'} + (4 + m) \delta_{x,x'}
\]

Dirac spin projector matrices (4x4 spin space)

SU(3) QCD gauge field (3x3 color space)

Nearest neighbor Local

4d nearest-neighbor stencil operator acting on a vector field
Mapping the Wilson Dslash to CUDA

- Looping over direction each thread must
 - Load the neighboring spinor (24 numbers x8)
 - Load the color matrix connecting the sites (18 numbers x8)
 - Do the computation
 - Save the result (24 numbers)
- Minimum resources required
 - $12 + 18 + 24 = 54$ registers
 - Fermi supports 63x 32-bit registers per thread
- Arithmetic intensity
 - 1320 floating point operations per site
 - 1440 bytes per site (single precision)
 - 0.92 naive arithmetic intensity

$$D_{x,x'} =$$
Mapping the Wilson Dslash to CUDA

- Looping over direction each thread must
 - Load the neighboring spinor (24 numbers x8)
 - Load the color matrix connecting the sites (18 numbers x8)
 - Do the computation
 - Save the result (24 numbers)
- Minimum resources required
 - $12 + 18 + 24 = 54$ registers
 - Fermi supports 63×32-bit registers per thread
- Arithmetic intensity
 - 1320 floating point operations per site
 - 1440 bytes per site (single precision)
 - 0.92 naive arithmetic intensity

\[D_{x,x'} = \]

Tesla M2090

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gflops</td>
<td>1333</td>
</tr>
<tr>
<td>GBytes/s</td>
<td>177</td>
</tr>
<tr>
<td>Al</td>
<td>7.5</td>
</tr>
</tbody>
</table>

bandwidth bound
memory coalescing

- To achieve maximum bandwidth threads within a warp must read from consecutive regions of memory
 - Each thread can load 32-bit, 64-bit or 128-bit words
 - CUDA provides built-in vector types

<table>
<thead>
<tr>
<th>type</th>
<th>32-bit</th>
<th>64-bit</th>
<th>128-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>int</td>
<td>int</td>
<td>int2</td>
<td>int4</td>
</tr>
<tr>
<td>float</td>
<td>float</td>
<td>float2</td>
<td>float4</td>
</tr>
<tr>
<td>double</td>
<td></td>
<td>double</td>
<td>double2</td>
</tr>
<tr>
<td>char</td>
<td>char4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>short</td>
<td>short2</td>
<td>short4</td>
<td></td>
</tr>
</tbody>
</table>
Field Ordering

- Typical CPU spinor field ordering: array of spinors (V x 24 floats)

 Threads read non-contiguous data

- Spinor (24 numbers)

 - Reorder fields for coalescing: 6V x float4

 Threads read contiguous data

- Similar reordering required for color matrices: 3V x float4

- 16-bit uses short4, 64-bit uses double2
Reducing Memory Traffic

- SU(3) matrices are all unitary complex matrices with \(\det = 1 \)
 - 12-number parameterization: reconstruct full matrix on the fly in registers
 \[
 \begin{pmatrix}
 a_1 & a_2 & a_3 \\
 b_1 & b_2 & b_3 \\
 c_1 & c_2 & c_3 \\
 \end{pmatrix}
 \rightarrow
 \begin{pmatrix}
 a_1 & a_2 & a_3 \\
 b_1 & b_2 & b_3 \\
 \end{pmatrix}
 \quad c = (a \times b)^* \\
 \]
 - Additional 384 flops per site
 - 8 number parameterization
 \[
 \begin{pmatrix}
 a_1 & a_2 & a_3 \\
 b_1 & b_2 & b_3 \\
 c_1 & c_2 & c_3 \\
 \end{pmatrix}
 \rightarrow
 \begin{pmatrix}
 \arg(a_1) & \arg(c_1) & \text{Re}(a_2) & \text{Im}(a_2) \\
 \text{Re}(a_3) & \text{Im}(a_3) & \text{Re}(b_1) & \text{Im}(b_1) \\
 \end{pmatrix}
 \]
 - Additional 856 flops per site
 - Gauge fix to unit gauge field along T-dimension
Reducing Memory Traffic

- Impose similarity transforms to increase sparsity
 - Globally change Dirac matrix basis

\[P^{±4} = \begin{pmatrix} 1 & 0 & ±1 & 0 \\ 0 & 1 & 0 & ±1 \\ ±1 & 0 & 1 & 0 \\ 0 & ±1 & 0 & 1 \end{pmatrix} \]

\[P^{±4} = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix} P^{-4} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix} \]

- (Advanced) Still memory bound - Can further reduce memory traffic by truncating the precision
 - Use 16-bit fixed-point representation
Wilson-Dslash Performance

• For illustration only; not our latest and greatest
• Runs were done on a single Fermi GTX 480 (~M2090)
• Typical single-node performance on Westmere
 – ~25 Gflops for typical optimized production code
 – ~50 Gflops when highly optimized (Smelyanskiy et al)
• Hold spatial lattice dimensions fixed 24^3, vary temporal extent
 – Demonstrates the need for minimum problem size to hide latencies
Wilson performance - single precision

![Graph showing Wilson performance](image-url)
Wilson performance - double precision
Wilson performance - half precision
Parallel Reduction

- Common and important data parallel primitive in solvers
- Tree-based approach used within each thread block
 - Use shared memory to communicate within thread blocks
Parallel Reduction

- Avoid global sync by decomposing computation into multiple kernel invocations

Kernel 1: 8 blocks

Kernel 2: 1 block
Optimizing the Solver: Kernel Fusion
Optimizing the Solver: Kernel Fusion

\[z = z + ax + by \]
\[y = y - bw \]
\[c = |y|^2 \]
\[d = (v, w) \]

5 vector reads

2 vector writes
Mixed-Precision Solvers

- Often require solver tolerance beyond limit of single precision
- But single and half precision much faster than double
- Use mixed precision
 - e.g. defect-correction

QUDA uses Reliable Updates (Sleijpen and Van der Worst 1996)

Almost a free lunch
 - Iteration count increases
32^3x96 Wilson results on GTX 280 (for illustration)
32^3 x 96 Wilson results on GTX 280 (for illustration)

Speedup increasing condition number
GPUs vs. CPUs

24³x128 lattice, Chroma Single Prec Clover

- 273.5 GFlops (per JLab GTX480 @ 4 GPUs)
- 175 GFlops (per JLab Tesla C2050 @ 4 GPUs)

- CG, 2x4 Barcelona@1.9GHz, DDR IB
- CG, 2x4 Nehalem@2.4GHz, QDR IB
- IBiCGStab, 2x4 Nehalem@2.4 GHz, QDR IB

~146 cores
Multiple GPUs
The need for multiple GPUs

• Only yesterday’s lattice volumes fit on a single GPU
• More cost effective to build multi-GPU nodes
 • Better use of resources if parallelized
• Gauge generation requires strong scaling
 • Can GPUs replace traditional super computers?
The need for multiple GPUs

• Only yesterday’s lattice volumes fit on a single GPU
• More cost effective to build multi-GPU nodes
 • Better use of resources if parallelized
• Gauge generation requires strong scaling
 • Can GPUs replace traditional super computers?
The need for multiple GPUs

• Only yesterday’s lattice volumes fit on a single GPU
• More cost effective to build multi-GPU nodes
 • Better use of resources if parallelized
• Gauge generation requires strong scaling
 • Can GPUs replace traditional super computers?
Multiple GPUs

• Many different mechanisms for controlling multiple GPUs
 • MPI processes
 • CPU threads
 • Multiple GPU per thread and do explicit switching
 • Combinations of the above
• QUDA uses the simplest: 1 GPU per MPI process
 • Allows partitioning over node with multiple devices and multiple nodes
 • `cudaSetDevice(local_mpi_rank);`
CUDA Stream API

• CUDA provides the stream API for concurrent work queues
 • Provides concurrent kernels and host<->device memcpys
 • Kernels and memcpys are queued to a stream
 • kernel<<<block, thread, shared, streamId>>>(arguments)
 • cudaMemcpyAsync(dst, src, size, type, streamId)
 • Each stream is an in-order execution queue
 • Must synchronize device to ensure consistency between streams
 • cudaDeviceSynchronize()

• QUDA uses the stream API to overlap communication of the halo region with computation on the interior
1D Lattice decomposition

1D decomposition (in ‘time’ direction)

Assign sub-lattice to GPU

face exchange

face exchange

face exchange

face exchange

wrap around

Thursday, August 23, 2012
Multi-dimensional lattice decomposition

Diagram:

- **Face exchange**
- **Wrap around**

Image shows a graphical representation of a multi-dimensional lattice decomposition with arrows indicating face exchange and wrap around.
Multi-dimensional Ingredients

• Packing kernels
 – Boundary faces are not contiguous memory buffers
 – Need to pack data into contiguous buffers for communication
 – One for each dimension

• Interior dslash
 – Updates interior sites only

• Exterior dslash
 – Does final update with halo region from neighbouring GPU
 – One for each dimension
Multi-dimensional Kernel Computation

2-d example
- Checkerboard updating scheme employed, so only half of the sites are updated per application
 - Green: source sites
 - Purple: sites to be updated
 - Orange: site update complete
Multi-dimensional Kernel Computation

Step 1
• Gather boundary sites into contiguous buffers to be shipped off to neighboring GPUs, one direction at a time.
Multi-dimensional Kernel Computation

Step 1
- Gather boundary sites into contiguous buffers to be shipped off to neighboring GPUs, one direction at a time.
Multi-dimensional Kernel Computation

Step 1
- Gather boundary sites into contiguous buffers to be shipped off to neighboring GPUs, one direction at a time.
Multi-dimensional Kernel Computation

Step 1
- Gather boundary sites into contiguous buffers to be shipped off to neighboring GPUs, one direction at a time.
Multi-dimensional Kernel Computation

Step 2

An “interior kernel” updates all local sites to the extent possible. Sites along the boundary receive contributions from local neighbors.
Multi-dimensional Kernel Computation

Step 3

Boundary sites are updated by a series of kernels - one per direction.

A given boundary kernel must wait for its ghost zone to arrive.

Note in higher dimensions corner sites have a race condition - serialization of kernels required.
Multi-dimensional Kernel Computation

Step 3

Boundary sites are updated by a series of kernels - one per direction.

A given boundary kernel must wait for its ghost zone to arrive.

Note in higher dimensions corner sites have a race condition - serialization of kernels required.
Multi-dimensional Kernel Computation

Step 3

Boundary sites are updated by a series of kernels - one per direction.

A given boundary kernel must wait for its ghost zone to arrive

Note in higher dimensions corner sites have a race condition - serialization of kernels required
Multi-dimensional Kernel Computation

Step 3

Boundary sites are updated by a series of kernels - one per direction.

A given boundary kernel must wait for its ghost zone to arrive.

Note in higher dimensions corner sites have a race condition - serialization of kernels required.
has data dependency with each other and must be executed because of the spinors in corners. It is also clear from the above description that most of the data traffic comes from the gauge field and exterior kernels to minimize the uncoalesced access penalty.

One or another, we choose to compute our index using the complete coalesced access impossible and one has to choose to one of two mapping schemes. Such differentiation in local spinor regions still follows the T slowest changing index when X, Y, Z the slowest to okD mapping schedule with X, k, Y, k, Z.

One extra stream is used for interior and exterior kernels, but the different data mapping makes memory accesses in both interior and exterior kernel for T dimension impossible. Nevertheless, the ghost spinor and gauge field follows different memory for T dimension using the ghost spinor and partial results for spinors in the boundary.

However, in the Xi Yi Z exterior kernels, the ghost spinor camping problem and further improves the performance. Use of memory padding avoids the GPU memory partitioning problem and gauge field follows different memory for T dimension using the ghost spinor and partial results for spinors in the boundary. The interior kernel computes any contributions to the destination spinors and the partial results for spinors in the boundary, while the exterior kernel computes the space contribution for this spinor which is located only in the T boundary spinors that does not involve with ghost spinors. Since spinors in the Th boundary, the interior kernel computes the full results for the boundary-update kernels.

The ghost gauge fields from the Th neighbor, with X being kernel and T exterior kernel, the rkd to okD mapping strategy is the same for the spinor and gauge field, with X being the fastest changing index and T the slowest changing index. The use of memory padding avoids the GPU memory partitioning problem and is ordered on the GPU so as to ensure that memory accesses in both interior and exterior kernel as well as the negative T direction's contribution for this spinor will be computed in the positive T direction. The interior kernel computes any contributions to the destination spinors and the partial results for spinors in the boundary, while the exterior kernel computes the space contribution for this spinor which is located only in the T boundary spinors that does not involve with ghost spinors.
Performance results

- Results presented at SC’11 (not taking advantage of more recent optimizations).
- Test Bed: “Edge” at LLNL
 - 206 nodes available for batch jobs, with QDR infiniband
 - 2 Intel Xeon X5660 processors per node (6-core Westmere @ 2.8 GHz)
 - 2 Tesla M2050 cards per node, sharing 16 PCI-E lanes via a switch
 - ECC enabled
 - CUDA 4.0
Matrix-vector performance

Strong scaling $32^3 \times 256$

Wilson-clover dslash

Thursday, August 23, 12
Strong scaling $32^3 \times 256$
Wilson-clover BiCGstab
Strong scaling $32^3 \times 256$
Wilson-clover BiCGstab

Thursday, August 23, 12
Building a scalable solver

- Inter-GPU communication hurts, so let’s avoid it.
- In the strong-scaling regime, we employ a solver with a domain-decomposed preconditioner.
- Most of the flops go into the preconditioner, where communication is turned off.
- Half precision is perfect here.
- Iteration count goes up, but it’s worth it.
Building a scalable solver

- Inter-GPU communication hurts, so let’s avoid it.
- In the strong-scaling regime, we employ a solver with a domain-decomposed preconditioner.
- Most of the flops go into the preconditioner, where communication is turned off.
- Half precision is perfect here.
- Iteration count goes up, but it’s worth it.
Strong scaling $32^3 \times 256$
Wilson-clover BiCGstab
Strong scaling $32^3 \times 256$
Wilson-clover BiCGstab
Figure 9: Strong Scaling benchmarks on a lattice of size dc^3 sites from Cray XT4 rJaguarsv, Cray XT5 rJaguarPFs and BlueGeneyP rIntrepidsx. Solves were done to double precision accuracy. The Cray solvers used mixed rsinglew doubles precision, while the BGyP solver was done purely in double precision. Mains or using multiWlevels of SchwarzWtype blocking to take advantage of the multiple levels of memory locality that a xPU cluster o...

Moreover we view the xPU and the use of the Schwarz preconditioner as part of a larger restructuring of algorithms and software to address the inevitable future at the extreme scale of heterogeneous architectures with deep memory hierarchies. We anticipate that the arsenal of tools needed for the future of lattice Qtu and similarly structured problems R e[g[V finite di...

11. ACKNOWLEDGMENTS

We gratefully acknowledge the use of the vdge xPU clusWter at Lawrence Livermore National Laboratory. Mr. acknowledges funding under NSw grant OtzWbagaagh[s– is funded through U\[S\[uOv project grants uvWwtacWagvRebeea and uvWwtacWagvRebeej RUSQtu Sciurt projectS and uuWrtafWagORcdbhh under which –e

12. REFERENCES

[e] Ronald sabichV Michael r\[tlarkV and s´ alint –o´ o\[Parallelizing the QUur Library for MultiWxPU talculations in Lattice Quantum thromodynamics\[zn Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis

[f] Steven xottliebV xuochun ShiV raron TorokV and Volodymyr Kindratenko\[QUur programming for staggered quarks\[PoS

[g] xuochun ShiV Steve xottliebV raron TorokV and Volodymyr V\[Kindratenko\[uesign of milc lattice qcd application for gpu clusters\[zn IPDPS

[i] s\[Sheikholeslami and R\[Wohlert\[zmproved tontinuum Limit Lattice rction for Qtu with Wilson wermions\[Nucl. Phys.

[ba] y\[r\[van der Vorst\[siWtxSTrsk r wast and Smoothly tonverging Variant of siWtx for the Solution of Nonsymmetric Linear Systems\[SIAM Journal on Scientific and Statistical Computing

[bb] Thomas r\[uegrand and Pietro Rossi\[tonditioning techniques for dynamical fermions\[Computer Physics
This is the future of capability computing...

Tsubame 2.0
4224 GPUs

Tianhe-1A
7168 GPUs

coming soon...

Titan
>20 Petaflops
18,688 GPUs
Strong scaling on TitanDev (Cray XK6)

- 960 nodes, each with:
 - 1 Tesla X2090
 - 1 Opteron (16-core/8-module “Interlagos”)

- Cray Gemini interconnect

- Development platform in anticipation of Titan
Results from TitanDev
- $48^3 \times 512$ aniso clover
- scaling up 768 GPUs
What haven’t we covered?

• Non-solver kernels required for HMC
 – Gauge force, fermion force, link fattening
• Advanced optimizations
 – Using shared memory for cache blocking
 – Autotuning
 – Texture cache and half precision
 – and lots more
HMC timing breakdown

Time distribution for a run on 2048 XT3 (BigBen) cpus
using a $40^3 \times 96$ grid ($5 \times 10^2 \times 6$ per cpu) with $m_t = 0.1 m_s$:

<table>
<thead>
<tr>
<th>Activity</th>
<th>time(s)</th>
<th>MF/cpu</th>
<th>per cent</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG</td>
<td>2987</td>
<td>530</td>
<td>58.5</td>
</tr>
<tr>
<td>FF</td>
<td>1125</td>
<td>579</td>
<td>22.0</td>
</tr>
<tr>
<td>GF</td>
<td>489</td>
<td>469</td>
<td>9.5</td>
</tr>
<tr>
<td>Fat</td>
<td>442</td>
<td>627</td>
<td>8.7</td>
</tr>
<tr>
<td>Long</td>
<td>24</td>
<td>340</td>
<td><1</td>
</tr>
<tr>
<td>Input config.</td>
<td>41</td>
<td></td>
<td><1</td>
</tr>
<tr>
<td>total above</td>
<td>5108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>unaccounted</td>
<td>104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wallclock</td>
<td>5212</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Work in progress

• Gauge field generation on GPUs, for 2 different discretizations & applications:
 – Improved staggered in MILC
 – Wilson and Wilson-clover in Chroma (leveraging Frank Winter’s QDP-JIT framework)

• Adaptive geometric multigrid on GPUs
 – GPUs give 5-10x in price/performance
 – Multigrid has the potential to give another 10x (at least for Wilson and Wilson-clover) at light quark masses.
Getting into QUDA
Using QUDA

• QUDA designed to accelerate pre-existing LQCD applications
 – Chroma, MILC, CPS, BQCD

• Solo QUDA workflow possible
 – tests directory includes linear solver examples
 – Gauge fields loaded through QIO
 – tests main use is for self contained correctness checking
Using QUDA

• QUDA provides a simple C interface for the outside world
 • Host applications simply pass cpu-side pointers
 • QUDA takes care of all field reordering and data copying
• Both a blessing and curse

```c
#include <quda.h>

int main() {
    // initialize the QUDA library
    initQuda(device);

    // load the gauge field
    loadGaugeQuda((void*)gauge, &gauge_param);

    // perform the inversion
    invertQuda(spinorOut, spinorIn, &inv_param);

    // free the gauge field
    freeGaugeQuda();

    // finalize the QUDA library
    endQuda();
}
```
Getting Involved with QUDA

• QUDA is open source
 – All development done in github
• Features requests are welcome
• More developers are even more welcome
Summary

• Glimpse into the QUDA library
 – Implementing the Dslash
 – Multi-GPU considerations

• Possible take-home messages
 – Start experimenting with writing code with GPUs
 • CUDA C/C++, OpenACC, it doesn’t matter
 – Using GPUs + QUDA as a black box to accelerate physics
 – Looking deeper into QUDA
 • contact me mclark@nvidia.com
Domain Decomposition

- Non-overlapping blocks - simply have to switch off inter-GPU communication
- Preconditioner is a gross approximation
 - Use an iterative solver to solve each domain system
 - Require only 10 iterations of domain solver \(\Rightarrow \) 16-bit
- Need to use a flexible solver \(\Rightarrow \) GCR
- Block-diagonal preconditioner impose \(\lambda \) cutoff
- Finer Blocks lose long-wavelength/low-energy modes
 - keep wavelengths of \(\sim O(\Lambda_{\text{QCD}}^{-1}) \), \(\Lambda_{\text{QCD}}^{-1} \sim 1\text{fm} \)
- Aniso clover: \((a_s=0.125\text{fm}, a_t=0.035\text{fm}) \) \(\Rightarrow \) \(8^3\times32 \) blocks are ideal
- \(48^3\times512 \) lattice: \(8^3\times32 \) blocks \(\Rightarrow \) 3456 GPUs
Run-time autotuning

- **Motivation:**
 - Kernel performance (but not output) strongly dependent on launch parameters:
 - `gridDim` (trading off with work per thread), `blockDim`
 - `blocks/SM` (controlled by over-allocating shared memory)

- **Design objectives:**
 - Tune launch parameters for all performance-critical kernels at run-time as needed (on first launch).
 - Cache optimal parameters in memory between launches.
 - Optionally cache parameters to disk between runs.
 - Preserve correctness.
Auto-tuned “warp-throttling”

- Motivation: Increase reuse in limited L2 cache.
Run-time autotuning: Implementation

- Parameters stored in a global cache:

  ```cpp
  static std::map<TuneKey, TuneParam> tunecache;
  ```

- **TuneKey** is a struct of strings specifying the kernel name, lattice volume, etc.

- **TuneParam** is a struct specifying the tune blockDim, gridDim, etc.

- Kernels get wrapped in a child class of **Tunable** (next slide)

- **tuneLaunch()** searches the cache and tunes if not found:

  ```cpp
  TuneParam tuneLaunch(Tunable &tunable, QudaTune enabled, QudaVerbosity verbosity);
  ```
Run-time autotuning: Usage

- Before:
 `myKernelWrapper(a, b, c);`

- After:
 `MyKernelWrapper *k = new MyKernelWrapper(a, b, c);
 k->apply(); // <--- automatically tunes if necessary`

- Here `MyKernelWrapper` inherits from Tunable and optionally overloads various virtual member functions (next slide).

- Wrapping related kernels in a class hierarchy is often useful anyway, independent of tuning.
Virtual member functions of Tunable

- Invoke the kernel (tuning if necessary):
 - apply()
- Save and restore state before/after tuning:
 - preTune(), postTune()
- Advance to next set of trial parameters in the tuning:
 - advanceGridDim(), advanceBlockDim(), advanceSharedBytes()
 - advanceTuneParam() // simply calls the above by default
- Performance reporting
 - flops(), bytes(), perfString()
- etc.