Dynamical pairing effects on soft quadrupole vibrations in deformed unstable nuclei close to the neutron drip line

Kenichi Yoshida (Kyoto Univ.)
In collaboration with
Masayuki Yamagami (RIKEN)
Kenichi Matsuyanagi (Kyoto Univ.)

10/11/05
Collective vibrations ~ superposition of particle-hole excitations

stable nuclei

drip-line nuclei

coupling to continuum states
 • Excitations into the continuum
 • Pair correlations in the continuum

Mechanism for generation of collective modes in the new situation?
Dominance of single-particle excitation

Octupole excitations on SD state in 50S

K. Yoshida et al., PTP113 (2005), 1251

Deformed RPA without pairing

Single-particle excitation from weakly bound to resonant state is dominant.

$X_{ph} \approx 0.97$

Collective modes disappear??

Effect of pairing
QRPA calculations for investigation properties of excitation modes in neutron-rich nuclei

Spherical nuclei
- e.g. Matsuo et al., PRC71 (2005), 064326
- pairing: Hartree-Fock-Bogoliubov method
- continuum: Out-going boundary condition

Deformed nuclei
- Hagino et al., NPA731 (2004), 264c
- pairing: BCS approximation, neglect dynamical pairing
- continuum: Box boundary condition
- deformation: Expansion in spherical basis
Low-lying modes unique to neutron-rich nuclei

Quadrupole vibration of neutron skin

In deformed superfluid system close to the drip line

Effect of Deformation? Pairing? Continuum?

Soft $K=0^+$ mode?
Deformation Pairing Continuum

Directly solve HFB eq. in coordinate-space mesh-representation

H.O. basis

Spatially extended structure

First results of such a calculation
Investigation of deformed neutron-rich nuclei

Ground state

Coordinate-space HFB equation

\[
\begin{pmatrix}
h(r) - \lambda & \tilde{h}(r) \\
\tilde{h}(r) & -h(r) + \lambda
\end{pmatrix}
\begin{pmatrix}
\varphi_1(E, r) \\
\varphi_2(E, r)
\end{pmatrix}
= E
\begin{pmatrix}
\varphi_1(E, r) \\
\varphi_2(E, r)
\end{pmatrix}
\]

Mean-field Deformed Woods-Saxon potential

\[
h = -\frac{\hbar^2}{2m} \nabla^2 + V_{WS}\rho + V_{SO}\nabla f \cdot (\sigma \times p)
\]

\[
f(\rho, z) = \frac{1}{(1 + \exp[(r - R(\theta))/a])}, \quad r^2 = \rho^2 + z^2
\]

Pair-field Density-dependent delta interaction

\[
\tilde{h} = \frac{V_0}{2} \left(1 - \frac{\rho(r)}{\rho_0}\right)
\]

\[
V_0 = -450 \text{ MeV fm}^3, \quad \rho_0 = 0.16 \text{ fm}^{-3}
\]
Excited state

QRPA equation in the AB matrix formulation

\[
\sum_{\gamma\delta} \begin{pmatrix} A_{\alpha\beta\gamma\delta} & B_{\alpha\beta\gamma\delta} \\ B_{\alpha\beta\gamma\delta} & A_{\alpha\beta\gamma\delta} \end{pmatrix} \begin{pmatrix} X_{\gamma\delta}^\lambda \\ Y_{\gamma\delta}^\lambda \end{pmatrix} = \hbar \omega^\lambda \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} X_{\alpha\beta}^\lambda \\ Y_{\alpha\beta}^\lambda \end{pmatrix}
\]

Residual interaction

p-h channel \[v_{\text{ph}}(\mathbf{r}, \mathbf{r}') = [t_0 (1 + x_o P_\sigma) + \frac{t_3}{6} (1 + x_3 P_\sigma) \rho(\mathbf{r})] \delta(\mathbf{r} - \mathbf{r}') \]

p-p channel \[v_{\text{pp}}(\mathbf{r}, \mathbf{r}') = V_0 \left(1 - \frac{\rho(\mathbf{r})}{\rho_0}\right) \delta(\mathbf{r} - \mathbf{r}') \]

Spurious modes should be zero excitation energy.

\[\mathbf{v} \rightarrow f \cdot \mathbf{v} \]

Normalize the interaction strength
Deformed unstable nuclei

As an example of deformed neutron drip-line nuclei

Mg region

J.Terasaki et al., NPA621(1997)706
Isoscalar quadrupole transition strengths (intrinsic)

Low-frequency quadrupole vibrations in deformed Mg isotopes close to the drip line

Neutron number increasing

Enhancement of neutron excitation
Soft K=0\(^+\) mode in deformed \(^{40}\)Mg

\[
\left| \frac{M_n}{M_p} \right| \sqrt{\frac{N}{Z}} = \frac{6.78}{2.33} = 2.9
\]

Isoscalar \(^{40}\)Mg \(K^\pi=0^+\)

Unperturbed

Strength (fm\(^4\))

\[|X|^2 - |Y|^2\]

\[\langle \lambda | \hat{Q}_{20} | 0 \rangle = \sum_{\alpha \beta} M_{20}^{\alpha \beta} \]

\(h\omega=2.90\) MeV

1 W.u.=8.13 fm\(^4\)
Physically meaningful or box artificial?

Box calculation
Discretized spectrum even above the threshold

?
Structure of soft $K=0^+$ mode in ^{40}Mg

Pairing

$|X_{\alpha\beta}| \geq 0.1$
Properties of positive energy states

\[\Omega^\pi = 1/2^- \]

\[\Omega^\pi = 3/2^- \]
Eigenphase sum \[\Delta(E) = \sum_a \delta_a(E), \quad (U^\dagger SU)_{aa'} = e^{2i\delta_a(E)} \delta_{a,a'} \]

Hagino et al., NPA735(2004)55

Main 2qp excitations generating the K=0+ state are associated with one-particle resonant or bound states.

This K=0+ mode can be considered as a resonance.
Box size dependence

\[\rho_{\text{max}} \times z_{\text{max}} = 10.0 \text{ fm} \times 12.8 \text{ fm} \]

\[\rho_{\text{max}} \times z_{\text{max}} = 13.2 \text{ fm} \times 16.0 \text{ fm} \]
Coupling with spurious mode

Trial wave functions

\[K^\pi = 0^+ \] Pair rotation

Restoration of broken symmetry

|\langle 0 | N | \lambda \rangle |^2 |

\[\hbar \omega \text{ (MeV)} \]

- Particle number violation
- HFB approximation
Two-neutron pair transition strengths

\[\hat{T}_{\text{add}} = \int d\mathbf{r} \mathbf{r}^2 Y_{20} \varphi^+(\mathbf{r}, \uparrow) \varphi^+(\mathbf{r}, \downarrow), \quad \hat{T}_{\text{rem}} = \int d\mathbf{r} \mathbf{r}^2 Y_{20} \varphi(\mathbf{r}, \downarrow) \varphi(\mathbf{r}, \uparrow) \]

\[|< \lambda | \hat{T} | 0 >|^2 \]

Pair creation

Pair annihilation
Neutron-pair creation/annihilation

\[\sum_{\alpha \beta} M_{\text{pair-rem}}^{\alpha \beta} (\text{fm}^2) \]

\[\sum_{\alpha \beta} M_{\text{pair-add}}^{\alpha \beta} (\text{fm}^2) \]

\[\langle \lambda | \hat{T}_{\text{rem}} | 0 \rangle = \sum_{\alpha \beta} M_{\text{pair-rem}}^{\alpha \beta} \]

\[\langle \lambda | \hat{T}_{\text{add}} | 0 \rangle = \sum_{\alpha \beta} M_{\text{pair-add}}^{\alpha \beta} \]
Mechanism for generation of soft $K=0^+$ mode

Collective both in p-h and in p-p channel

How to generate the coherent mode?

Why are the transition strengths large? \(\sim 10\text{-}20 \text{ W.u. (intrinsic)} \)

Two key points

Pair correlation

Effect of dynamical pairing

Weakly bound system

Spatial structure of quasiparticle wave functions
Dynamical pairing

Superposition of p-h, p-p and h-h vibrations

→ Generation of the coherence

\[\begin{align*}
\text{40 Mg} & \quad K^\pi=0^+ \\
\text{\(K^\pi=0^+\)} & \\
\text{\(K^\pi=2^+\)} & \\
\text{\(K^\pi=2^+\)} & \\
\end{align*} \]
Spatial structure of 2qp excitations (p-h channel)

$$< \alpha \beta | \hat{Q}_{20} | 0 > \equiv \int d \rho dz Q_{20}^{\alpha \beta} (\rho, z) \quad \hat{Q}_{20} = \sum_{\sigma} \int d \rho r^2 Y_{20} \psi^+ (\mathbf{r}, \sigma) \psi (\mathbf{r}, \sigma)$$

(a) $[310]1/2 \rightarrow [310]1/2$

(b) $[312]3/2 \rightarrow [312]3/2$

(c) $[310]1/2 \rightarrow [301]1/2$

(d) $[301]1/2 \rightarrow [301]1/2$

(e) $[303]7/2 \rightarrow [303]7/2$

(f) $[321]3/2 \rightarrow [321]3/2$

$$Q_{20}^{\alpha \beta} (\rho, z)$$
Spatial structure of 2qp excitations (p-p, h-h channel)

\[
\langle \alpha\beta | \hat{T} | 0 \rangle \equiv \int d\rho dz Q_{\text{pair-add}}^{\alpha\beta}(\rho, z) \quad \hat{T} = \int drr^2 Y_{20} \psi^+(\mathbf{r}, \uparrow)\psi^+(\mathbf{r}, \downarrow)
\]
Soft K=2\(^+\) mode in deformed \(^{40}\text{Mg}\)

\[
\frac{M_n}{M_p} \left/ \frac{N}{Z} \right. = \frac{9.43}{3.02} = 3.13
\]

\[
40\text{Mg} \\
K^{\pi}=2^+
\]

\[
\lambda(\hat{Q}_{22}|0> = \sum_{\alpha\beta} M_{22}^{\alpha\beta}
\]

\[
\hbar \omega = 2.78 \text{ MeV}
\]

1 W.u. = 8.13 fm\(^4\)
Neutron-pair creation/annihilation

Quadrupole pairing

\[
\hat{T}_{\text{add}} = \int d\mathbf{r} \mathbf{r}^2 Y_{22} \psi^+(\mathbf{r}, \uparrow) \psi^+(\mathbf{r}, \downarrow)
\]

\[
\hat{T}_{\text{rem}} = \int d\mathbf{r} \mathbf{r}^2 Y_{22} \psi(\mathbf{r}, \downarrow) \psi(\mathbf{r}, \uparrow)
\]

\[
|< \lambda | \hat{T} | 0 >|^2
\]
We have investigated properties of excitation modes in deformed Mg isotopes close to the neutron drip line.

Deformed QRPA calculation based on coordinate-space HFB including the continuum

We have obtained soft $K=0^+$ and 2^+ modes in $^{36-40}$Mg.

- **Spatial extension of two-quasiparticle wave functions**
 - Large transition strengths

- **Coupling between quadrupole vib. and pairing vib.**

- **Similar spatial structure of quasiparticle w.f. near the Fermi level**
 - Generating coherent mode

$K=0^+$ mode is particularly sensitive to the dynamical pairing.

- **Good indicator of pair correlation in deformed drip-line nuclei**