Visualizing Reaction Mechanism

A time-dependent Schrödinger equation approach

Kazu(hiro) Yabana

Center for Computational Sciences and Institute of Physics
Univ. of Tsukuba

Solve static quantum problem by time-dependent method:
Intuitive understanding of the dynamics.
Boundary condition is not necessary.
Computationally demanding.

Examples (3-body dynamics):
Low energy reaction of halo nuclei
Dipole response of two-neutron halo nuclei
Wave packet calculation for fusion probability

Radial Schroedinger equation for $l=0$

$$i\hbar \frac{\partial}{\partial t} u(r,t) = \left[-\frac{\hbar^2}{2m} \frac{d^2}{dr^2} + V(r) + iW(r)\right]u(r,t)$$

with incident Gaussian wave packet

$$u(r,t_0) = \exp\left[-ikr - \gamma(r-r_0)^2\right]$$

10Be – 208Pb (A,Z=10,4 and 208,82)

$V_0=-50$ $W_0=-10$, $RV=1.26$, $RW=1.215$, $AV=0.44$, $AW=0.45$

$E_{\text{inc}}=28$ MeV (+Coulomb at $R_0$), $R_0=40$ fm, $\gamma=0.1$ fm$^{-2}$

$N_r=400$, $dr=0.25$, $N_t=10000$, $dt=0.001$

Flux absorbed by $W(r)$ represents fusion.

High energy component goes over barrier and absorbed
Low energy component is reflected at the barrier.

Wave packet dynamics includes scattering information for wide energy region.
How to extract reaction information for a fixed energy?
Extract static (fixed-E) information from wave-packet dynamics:

Define energy distribution

\[ P_a(E) = \langle u_a | \delta(E - H) | u_a \rangle = \frac{1}{2\pi\hbar} \int_0^\infty dt \, e^{iE t / \hbar} \langle u_a \left( -\frac{t}{2} \right) | u_a \left( \frac{t}{2} \right) \rangle \]

\[ \delta(E - H) = \frac{1}{2\pi\hbar} \int_{-\infty}^\infty dt \, e^{i(E-H)t / \hbar} \]

---

Initial wave packet

Final wave packet

Energy distribution

Initial wave packet

Final wave packet

barrier top energy
\begin{equation}
P_{\text{fusion}}(E) = \frac{P_{\text{init}}(E) - P_{\text{final}}(E)}{P_{\text{init}}(E)}
\end{equation}

Fusion probability for whole barrier region from single wave-packet calculation.

No boundary condition required in the wave packet calculation.
(applicable to even 3-body reaction with 3 charged particles.)
1-Dimensional example:
Dipole strength of halo nuclei around threshold

\[
i\hbar \frac{\partial}{\partial t} \psi(\vec{r}, t) = \left[ -\frac{\hbar^2}{2m} \nabla^2 + V(r) + \frac{Z_C Z_T e^2}{\vec{R}(t) - \frac{\vec{r}}{A_p}} \right] \psi(\vec{r}, t)
\]

\[
i \approx \frac{Z_C Z_T e^2}{R(t)} + \frac{Z_C Z_T e^2}{A_p} \hat{R}(t) \vec{r}
\]

N. Fukuda, et.al,

Transition to continuum (breakup) state at energy \( E \)

\[
\frac{d\mathcal{B}(E_1)}{dE} = \sum_{m} \left| \left( \phi_{E,l=1,m}^* \left| M_{1m} \right| \phi_0 \right) \right|^2, \quad M_{1m} = -\frac{Z_C}{A_p} e^{r Y_{lm}(\hat{r})}, \quad \phi_{Elm}(\vec{r}) \rightarrow \sqrt{\frac{2m}{\pi \hbar^2 k}} \frac{\sin \left( kr - \frac{l}{2} \pi + \delta_l \right)}{r} Y_{lm}(\hat{r})
\]

\( \phi_0(\vec{r}) \) Initial bound orbital in \( ^{11}\text{Be} = ^{10}\text{Be} + n \), weakly-bound s-orbital \( (l=0) \)

\( \phi_{Elm}(\vec{r}) \) Final continuum orbital of \( ^{11}\text{Be} = ^{10}\text{Be} + n \)
Dipole response function by real-time propagation

\[
\frac{dB(E_1)}{dE} = -\frac{1}{\pi} \text{Im} \sum_m \langle \phi_0 | M_{1m}^+ \frac{1}{E + i\epsilon - H} M_{1m} | \phi_0 \rangle \quad M_{1m} = -\frac{Z}{A_p} eY_{1m}(\hat{r})
\]

\[-i\pi\delta(E - H)\]

\[
\frac{1}{i\hbar} \int_0^\infty dt e^{i(E + i\epsilon - H)t/\hbar} = -\frac{e^{i(E + i\epsilon - H)t/\hbar}}{E + i\epsilon - H} \bigg|_0^\infty = \frac{1}{E + i\epsilon - H}
\]

Time representation of response function

\[
\frac{dB(E_1)}{dE} = -\frac{1}{\pi} \text{Im} \sum_m \frac{1}{i\hbar} \int_0^\infty dt e^{iE_t/\hbar} \langle \phi_0 | M_{1m}^+ e^{-iHt/\hbar} M_{1m} | \phi_0 \rangle
\]

\[= \frac{1}{\pi\hbar} \text{Re} \int_0^\infty dt e^{iE_t/\hbar} \sum_m d\vec{r} \psi_{1m}^*(\vec{r},0)\psi_{1m}(\vec{r},t)
\]

\[\psi(\vec{r}, t = 0) = M_{1m} \phi_0(\vec{r})\]

\[i\hbar \frac{\partial}{\partial t} \psi(\vec{r}, t) = H\psi(\vec{r}, t)\]
In the partial wave expansion,

\[ \psi(\vec{r}, t = 0) = M_{1m} \phi_0(\vec{r}) \]

\[ i\hbar \frac{\partial}{\partial t} \psi(\vec{r}, t) = H \psi(\vec{r}, t) \]

\[ v_{l=1}(r, t = 0) = ru_{l=0}(r) \]

Initial condition:
\[ r \text{ multiplied to s-wave ground state in } ^{11}\text{Be} \]

Absorbing potential to save spatial region

\[ ru_{l=0}(r) \text{, spatially extended } (E_b = -0.5 \text{ MeV}) \]

\[ ru_{l=0}(r) = \sum_i c_i v_i(r) + \int dE c(E) y_E(r) \]
Time-dependent calculation

\[
\frac{dB(E1)}{dE} = \frac{1}{\pi \hbar} \text{Re} \int_0^\infty dt e^{iE_1 t / \hbar} \sum_m \int d\vec{r} \psi_m^* (\vec{r},0) \psi_m (\vec{r},t)
\]

Time-independent calculation

Scattering wave

\[
\frac{dB(E1)}{dE} = -\frac{1}{\pi} \text{Im} \sum_m \langle \phi_0 | M_{1m}^+ \frac{1}{E + i\varepsilon - H} M_{1m} | \phi_0 \rangle = \chi (\vec{r})
\]

\[
[E - H - iW_{abs} (r)]\chi (\vec{r}) = M_{1m}\phi_0 (\vec{r}) \quad \chi (\vec{r}) \to 0
\]

Linear problem in the partial wave expansion

\[
\left[ E - \left( -\frac{\hbar^2}{2m} \frac{d^2}{dr^2} + \frac{\hbar^2 l(l+1)}{2mr^2} + V(r) + iW_{abs} (r) \right) \right] w_{l=1} (r) = ru_0 (r)
\]
3-body dynamics in real-time

Low energy reaction of single-halo nucleus

Dipole response function of $^{11}\text{Li}$ (just started)
Reactions of halo nuclei at high incident energy

Success of Glauber and eikonal picture
Core and nucleon are scattered independently from the target

\[ \phi_n \cdot \Phi_C \Rightarrow \exp[i\chi_{nT}]\phi_n \cdot \exp[i\chi_{CT}]\Phi_C \]

Separation between:
Fast nucleus-nucleus relative motion
Slow internal halo motion

What is a basic picture at low incident energy?
Controversial history on the role of halo nucleon

Both experimentally and theoretically.
Fusion enhancement or suppression?

Simple and intuitive argument.
(presented in early stage and still many people are thinking)

Fusion probability may be enhanced by long-range nuclear attraction. but breakup hinders the enhancement of complete fusion. breakup processes contributes to the incomplete fusion.

But …
$^6$He experiments: evidence of fusion enhancement was reported.


$^6$He + $^{238}$U  M. Trotta et.al, PRL84(2000)2342.

However, recently …


Fusion cross section of $^6$He, $^4$He on $^{238}$U by measuring fission fragment.

$^6$He + $^{238}$U, large cross section accompanying fission

![Graphs showing fusion cross sections and neutron transfer](image)
Fusion cross section for $^{9,10,11}\text{Be}-^{209}\text{Bi}$

Cross sections are similar among three projectiles

Solve 3-body problem accurately, and look what happens.

\[
\left(-\frac{\hbar^2}{2\mu} \nabla^2_R - \frac{\hbar^2}{2m} \nabla^2_r + V_{nc}(r_{nC}) + V_{CT}(r_{CT}) + V_{nT}(r_{nT})\right) \Phi(\vec{R}, \vec{r}) = i\hbar \frac{\partial}{\partial t} \Phi(\vec{R}, \vec{r})
\]

We developed the time-dependent method, and we found the fusion is hindered by adding the halo nucleon.

3-dim, 3-body, J=0: Yabana, Prog. Theor. Phys. 97(1997)437
3-body reaction (n-C)-T
simulating $^{11}\text{Be}(=n+^{10}\text{Be})-^{209}\text{Bi}$

$$i\hbar \frac{\partial}{\partial t} \psi(\vec{R}, \vec{r}, t) = \left( -\frac{\hbar^2}{2\mu} \nabla^2_{\vec{r}} - \frac{\hbar^2}{2m} \nabla^2_{\vec{r}} + V_{nC}(r_{nC}) + V_{CT}(r_{CT}) + iW_{CT}(r_{CT}) + V_{nT}(r_{nT}) \right) \psi(\vec{R}, \vec{r}, t)$$

- real potential, weakly bound 2s bound orbital
- Core-Target fusion (=3-body fusion)
- Coulomb + Nuclear potential
- real nuclear potential (+Coulomb for n=proton)
Computational aspects

Partial wave expansion in body-fixed frame

\[ \psi_{JM} (\vec{R}, \vec{r}, t) = \sum_{j\Omega l} u_{\Omega l}^J (R, r, t) \Theta_\Omega l (\theta) D_{\Omega M}^J (\alpha \beta \gamma) \]


Uniform grids for R and r (R<50fm 0.2fm step, r<60fm 1fm step)

Large cutoff angular momentum, up to l_max=70 (maximum)

Taylor expansion of time-evolution operator
(as in TDHF calculations)

Initial wave packet: (s-wave n-C orbital)

\[ u_{\Omega l}^J (R, r, t_0) = \delta_{\Omega 0} \delta_{lJ} \exp \left[ -iKR - \gamma (R - R_0)^2 \right] \phi_0 (r) \]

Projectile-target relative motion
(incoming Gaussian wave packet)

Initial halo orbital (2s)
When a neutron is tightly bound in the projectile, two-center orbital and transfer process is significant.

3-body dynamics
Tightly-bound projectile \((E_b = -3.5\text{MeV})\)
\((n-^{10}\text{Be})-^{40}\text{Ca})\)

Initial wave packet:
\[
u_i(R, r, t_0) = \delta_{r_0} \exp \left[ -iKR - \gamma(R - R_0)^2 \right] u_0(r)
\]

\[
\rho(R, r, t) = \int d(\cos \theta) |\psi(R, r, \theta, t)|^2
\]

\[
\rho(r, \theta, t) = \int dR |\psi(R, r, \theta, t)|^2
\]
Fusion probability of 3-body system

\[ i\hbar \frac{\partial}{\partial t} \psi(\vec{R}, \vec{r}, t) = \left( -\frac{\hbar^2}{2\mu} \nabla^2 - \frac{\hbar^2}{2m} \nabla^2 + V_{nc}(r_{nc}) + V_{CT}(r_{CT}) + iW_{CT}(r_{CT}) + V_{nt}(r_{nt}) \right) \psi(\vec{R}, \vec{r}, t) \]

Fusion = core-target gets over the barrier.
(flux absorbed by \( iW_{CT} \))

Energy distribution

\[ P_a(E) = \langle u_a | \delta(E - H) | u_a \rangle \]
\[ = \frac{1}{2\pi\hbar} \int_0^\infty dt e^{iEt/\hbar} \left\langle u \left(\frac{t}{2}\right) \right| u \left(-\frac{t}{2}\right) \right\rangle \]

Fusion probability

\[ P_{fusion}(E) = \frac{P_i(E) - P_f(E)}{P_f(E)} \]

Large subbarrier enhancement
Role of added neutron in fusion process when neutron is tightly bound

Formation of molecular (two-center) orbital is crucial.

\( E_P = -3.5 \text{MeV} \)

Projectile \hspace{1cm} Target

\( E_T \)

Change n-T potential depth

\begin{align*}
E_P &< E_T & \text{fusion enhancement} \\
E_P &\approx E_T & \text{energy-dependent barrier} \\
E_P &> E_T & \text{fusion suppression}
\end{align*}
When a neutron is bound weakly in the projectile, Coulomb breakup is significant.

$^{11}\text{Be}(n+^{10}\text{Be})-^{208}\text{Pb}$ head-on collision ($J=0$)

\( n\text{C orbital energy: } -0.6 \text{ MeV (Halo)} \)

\[ \rho(R, r, t) = \int d(\cos \theta) |\psi(R, r, \theta, t)|^2 \]

\[ \rho(r, \theta, t) = \int dR |\psi(R, r, \theta, t)|^2 \]
\[ \rho(r, \theta, t) = \int dR |\psi(R, r, \theta, t)|^2 \]

Coulomb breakup of halo neutron
Fusion probability of neutron-halo nuclei is suppressed

![Graph showing fusion probability vs incident energy](image)
Possible Reason:
Core incident energy decreases effectively by neutron breakup

\[ E_{\text{core}} \approx \frac{M_{\text{core}}}{M_{\text{core}} + M_n} E_{\text{projectile}} \]
When a proton is bound weakly in the projectile, again Coulomb breakup is significant.

$^{11}\text{Be}(p+^{10}\text{Li})-^{208}\text{Pb}$ head-on collision (J=0)

pC orbital energy: -0.3 MeV (Halo)

pT Coulomb only. (No nuclear potential)

\[
\rho(R, r, t) = \int d(cos \theta) \psi(R, r, \theta, t)^2
\]

\[
\rho(r, \theta, t) = \int dR \psi(R, r, \theta, t)^2
\]
$^{11}\text{Be}-^{208}\text{Pb}$ fusion probability

Comparison between Proton halo $(p-^{10}\text{Li})-^{208}\text{Pb}$ and Neutron halo $(n-^{10}\text{Be})-^{208}\text{Pb}$

Strong enhancement of Fusion Probability for Proton-Halo case. Why?
Stronger backward acceleration by \([\text{charge/mass}]\) ratio

Proton breakup:

Core charge number smaller than Projectile \((Z_C = Z_P - 1)\)
Decrease of Coulomb barrier height
Cross section calculation:
up to  \( J = 30 \hbar \),  \( \Omega_{\text{max}} = 0 \)  (no-Coriolis approx.)

Computational aspects

Partial wave expansion in body-fixed frame

\[
\psi_{J\ell M}(\vec{R},r,t) = \sum_{j\Omega l} \frac{u'_{j\Omega l}(R,r,t)}{Rr} \Theta^j l(\theta) D^j_{\Omega M}(\alpha\beta\gamma)
\]


Uniform grids for \( R \) and \( r \)

Large cutoff angular momentum, up to \( l_{\text{max}} = 70 \)  (maximum)

Taylor expansion of time-evolution operator
(as in TDHF calculations)
3-body time-dependent wave packet calculation
Fusion cross section of neutron halo nuclei


Dipole strength of borromean nuclei: real-time calculation

A simple 3-body model for $^{11}$Li

\[ i\hbar \frac{\partial}{\partial t} \psi(\vec{r}_1, \vec{r}_2, t) = \left( -\frac{\hbar^2}{2m} \nabla_{\vec{r}_1}^2 - \frac{\hbar^2}{2m} \nabla_{\vec{r}_2}^2 + V_n(\vec{r}_1) + V_n(\vec{r}_2) + V_{nm}(\vec{r}_1 - \vec{r}_2) \right) \psi(\vec{r}_1, \vec{r}_2, t) \]

Simple treatment:
ignore recoil, no spin-orbit, just S=0 channel,...

Real-time propagation

\[ \frac{dB(E1)}{dE} = -\frac{1}{\pi} \text{Im} \sum_m \frac{1}{\hbar} \int_0^\infty dt e^{iEt/\hbar} \langle \phi_0 | M_{1m}^+ e^{-iHt/\hbar} M_{1m} | \phi_0 \rangle \]

\[ = \frac{1}{\pi\hbar} \text{Re} \int_0^\infty dt e^{iEt/\hbar} \sum_m \langle \psi_{1m}(0) | \psi_{1m}(t) \rangle \]

\[ \psi(\vec{r}_1, \vec{r}_2, t = 0) = (z_1 + z_2) \phi_0(\vec{r}_1, \vec{r}_2) \quad \text{(Dipole operator) x (3-body ground state)} \]

\[ i\hbar \frac{\partial}{\partial t} \psi(\vec{r}_1, \vec{r}_2, t) = H \psi(\vec{r}_1, \vec{r}_2, t) \]
### Hamiltonian

Woods-Saxon shape with

\[ V_{nn}: R=1.5\text{fm}, a=0.6\text{fm} \]

\[ V_{nC}: R=2.3\text{fm}, a=0.6\text{fm} \]

### Potentials depth

set to 3-body binding energy at 0.3MeV

<table>
<thead>
<tr>
<th>( V_{nn} )</th>
<th>( E_{n-n} )</th>
<th>( V_{nC} )</th>
<th>( E_{n-C}(l=1) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No</td>
<td>-42.10</td>
<td>-0.15</td>
</tr>
<tr>
<td>-10</td>
<td>No</td>
<td>-40.23</td>
<td>No</td>
</tr>
<tr>
<td>-20</td>
<td>No</td>
<td>-37.94</td>
<td></td>
</tr>
<tr>
<td>-30</td>
<td>No</td>
<td>-35.15</td>
<td></td>
</tr>
<tr>
<td>-35</td>
<td>-0.019 MeV</td>
<td>-33.51</td>
<td></td>
</tr>
<tr>
<td>-40</td>
<td>-0.33</td>
<td>-31.60</td>
<td></td>
</tr>
<tr>
<td>-50</td>
<td>-1.78</td>
<td>-23.70</td>
<td></td>
</tr>
</tbody>
</table>

### Calculated dipole strength of \( ^{11}\text{Li} \)

(absolute scale)

\[ \Delta r = 0.6\text{fm}, \text{up to } 90\text{fm} \]

absorbing potential at \( 30\text{fm} < r < 90\text{fm} \)

\( l_{\text{max}} = 10 \)

\[ \psi(r_1, r_2, t) = \sum_{l_1, l_2} \frac{\psi_{l_1} r_1, \psi_{l_2} r_2}{r_1 r_2} \left[ Y_{l_1} (\hat{r}_1) Y_{l_2} (\hat{r}_2) \right]_{l=1} \]
Potentials depth set to binding energy at 0.3MeV

<table>
<thead>
<tr>
<th>$V_{nn}$</th>
<th>$E_{n-n}$</th>
<th>$V_{nC}$</th>
<th>$E_{n-}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No</td>
<td>-42.10</td>
<td>-0.15</td>
</tr>
<tr>
<td>-10</td>
<td>No</td>
<td>-40.23</td>
<td>No</td>
</tr>
<tr>
<td>-20</td>
<td>No</td>
<td>-37.94</td>
<td></td>
</tr>
<tr>
<td>-30</td>
<td>No</td>
<td>-35.15</td>
<td></td>
</tr>
<tr>
<td>-35</td>
<td>-0.019</td>
<td>-33.51</td>
<td></td>
</tr>
<tr>
<td>-40</td>
<td>-0.33</td>
<td>-31.60</td>
<td></td>
</tr>
<tr>
<td>-50</td>
<td>-1.78</td>
<td>-23.70</td>
<td></td>
</tr>
</tbody>
</table>
No correlation: single-neutron response x 2

\[(z_1 + z_2)\phi_p(\vec{r}_1)\phi_p(\vec{r}_2) = z_1\phi_p(\vec{r}_1)\cdot\phi_p(\vec{r}_2) + \phi_p(\vec{r}_1)\cdot z_2\phi_p(\vec{r}_2)\]

\[H = \left[ -\frac{\hbar^2}{2m} \nabla_{r_1}^2 + V_{nC}(r_1) \right] + \left[ -\frac{\hbar^2}{2m} \nabla_{r_2}^2 + V_{nC}(r_2) \right]\]
When 2n are bound tightly (3MeV)

\[ V_{nn} = -25\text{MeV} \]

\[ V_{nn} = -35\text{MeV} \]
Summary

Real-time approach for static problem

Intuitive understanding of the dynamics (movie show)
No need to think about boundary condition
Program is simple but computation is heavy

Future direction

“Few-body reaction simulator”
Connecting model Hamiltonian and reaction observables

\[
\frac{dB(E1)}{d\vec{p}_1 d\vec{p}_2}
\]

3-body dynamics in time-dependent external field (4-body problem)