Breakup and the Spectroscopy of Continuum States

Ian Thompson
University of Surrey,
United Kingdom
Which Continuum?

• The continuum appears in several ways:
 – Part of expansion of bound states;
 • eg needed in RPA for weakly bound states
 – Dominated by resonances;
 • These ‘unbound states’ identified eg with shell model eigenstates above threshold
 – In non-resonant continuum;
 • eg in breakup reactions, or low-energy capture.

• ALL important parts of nuclear structure!!
‘Overlap’ Challenges

• Reaction models need few-body degrees of freedom in structure models.
 – Solve a few-body model directly, or
 – Extract few-particle dof from microscopic model
 • Difficult for: GFMC,
 • for HFB, QRPA and RMF structure models
 • Do we transfer quasi-particles, or particles?
What a good theory needs:

- Recoil & Finite Range of projectile vertex.
- Final-state (partial wave) interference
- Nuclear and Coulomb mechanisms
- Core excitation (initial and/or dynamic)
- **Final-state interactions:**
 - between halo fragments (needed if resonances)
 - between fragments and target (needed if close in)
- **Multistep Processes** (higher order effects)
CDCC: Coupled Discretised Continuum Channels

Try CDCC:
Coupled Discretised Continuum Channels
- Proposed by Rawitscher, developed by Kamimura group.
- Treat Coulomb and Nuclear mechanisms
 - Need to check convergence of long-range Coulomb process!
- All higher-order effects with a \((r,R,L)\) reaction volume
- Can calculate fragment coincident angular distributions: Predict \(d^3\sigma/dE_1d\Omega_1d\phi_{12}\) and fold with detector apertures & efficiencies
The Hamiltonian for the reaction of a projectile on a target

\[H = h_{\text{proj}} + h_{\text{targ}} + T_\alpha + V_\alpha \]

\[\Rightarrow h_{\text{proj}} = h_{\text{core}} + h_{\text{frag}} + T_{\text{cf}} + V_{\text{cf}} \]

\[\Rightarrow V_\alpha = V_{\text{core-targ}} + V_{\text{frag-targ}} \]

\[\psi_{\text{JM}}^{\text{CDCC}} (r, R) = [\phi_0 (r) \otimes Y_L (\hat{R})]_{\text{JM}} \chi_{0,L}^J (R) + \sum_{l=0}^{l_{\text{max}}} \sum_{L} \sum_{i=1}^{N} [\phi_{i,l} (r) \otimes Y_L (\hat{R})]_{\text{JM}} \chi_{i,l,L}^J (R) \]

(neglect the internal structure of the target)
CDCC Formalism

The CDCC basis consists of scattering wavefunctions averaged over an energy interval

\[\hbar \phi_{\text{proj}} \phi_k = \varepsilon_k \phi_k \]

\[\phi_{i,l} = \sqrt{\frac{2}{\pi N_i}} \int_{k_{i-1}}^{k_i} w_i(k) \phi_{lm}(k, r) \, dk \]

\[N_i = \int_{k_{i-1}}^{k_i} |w_i(k)|^2 \, dk \]

\[N_{\text{bins}} = \frac{k_{\text{max}}}{\Delta k} \]

Coupling potentials

\[V_{il,l'}^{\text{CDCC}}(R) = \langle \phi_{il}(r) | V_\alpha(r, R) | \phi_{l'l'}(r) \rangle \]
Testing CDCC Convergence

- Compare, in Adiabatic Few-Body Model, with Bremstrahlung integral
- Compare, in first-order PWBA model, with semiclassical theory

Note the ‘post-acceleration’
Adiabatic CDCC: compare with Exact 3-body model

Absolute errors in CDCC for d+^{208}Pb at 50 MeV, Nuclear+Coulomb

d+^{208}Pb at 50 MeV, nuclear only
$^{15}\text{C} + 9\text{Be}$ breakup at 54 MeV/u

FIG. 4. Diagrammatic representation of the CDCC model space calculation for ^{15}C. The left side shows the physical bound states and continuum and the right hand side the included continuum bins (16) in each $n + ^{14}\text{C}$ partial wave. The dashed arrows are representative of the one-way couplings included in the DWBA. The solid arrows show representative couplings for the full CDCC calculations which connect all bins, including diagonal bin couplings, with two-way couplings to all orders. Relative h waves were found to make negligible contributions.

Tostevin et al, PRC 66, 024607 (2002)
$^{11}\text{Be} + ^{12}\text{C}$ breakup at 67 MeV/u

Energy excitation spectrum
dashed line: multiplied by 0.8

Angular distributions of $^{11}\text{Be}^*$
left: low-energy continuum
right: region of $d_{5/2}$ resonance

CDCC calculations of
Howell, Tostevin, Al-Khalili,

1 Nov 2005
CDCC: sub-Coulomb $^8B + ^{58}Ni$ (26 MeV)

- Multistep Coulomb only
- Multistep Nuclear Only
Coulomb+Nuclear Multistep

- Coulomb+nuclear

- Effect of continuum-continuum couplings

Green lines: no continuum-continuum couplings
Convergence: max bin E_{rel}

- ^8B angular distribution
- ^7Be angular distributions

![Graphs showing angular distributions for ^8B and ^7Be with different max E_{rel}.]
Elastic Breakup: $\sigma(\theta)$

8B breakup on 58Ni ($E_{\text{beam}}=26$ MeV)

3-body observables
- sensitivity to 8B structure: overall normalisation
- sensitivity to p-target optical potential at larger angles

[Tostevin, Nunes and Thompson, PRC (2001) 024617]
Breakup reactions CDCC $^8\text{B} + ^{58}\text{Ni} \rightarrow ^7\text{Be}+p + ^{58}\text{Ni}$ ($E_b=26$ MeV)

Energy distributions: Excellent agreement with the data!
E1 & E2 breakup of 8B

- One-proton bound state known:
 - $^7\text{Be} \otimes (0p_{3/2} + 0p_{1/2})|_{2^+}$ at -0.137 MeV
- Need spectroscopy of non-resonant continuum!
 - $B(E1)$ & $B(E2)$ for transition $p \to s,d$ need to be accurately known
 - $E1$ and $E2$ amplitudes interfere in $p_{||}(^7\text{Be})$ momentum distribution
 - so measure relative $E2/E1$ amplitudes from asymmetries.
$^8\text{B} + ^{208}\text{Pb} \rightarrow ^7\text{Be}$ parallel momentum distributions

3.5 degrees

44 MeV/u

Dot-dashed: semiclassical Coul.
Solid: Coulomb+nuclear DWBA
Dashed: CDCC coupled channels
- reduced asymmetry

CDCC calculations with scaled E2 amplitudes
- need to increase asymmetry again!

1 Nov 2005
INT-05-3 Workshop
Extensions started

- Core excitation (static, dynamic)
 - Glauber: Batham et al
 - CDCC bins of particle+core coupled states, Summers & Nunes at MSU

- Three-cluster projectiles (e.g. two-neutron halo nuclei):
 - Gaussian expansions: Kamimura et al.
 - Transformed Harmonic Oscillator: Rodriguez-Gallardo et al
Wave functions of 6He

- Ground state wave function:
- Solution of coupled equations for $E \sim -0.97$ MeV.

Nuclei such as 6He have highly correlated cluster structures
1 Neutron stripping from three-body Borromean Nuclei

- Removal of a neutron from ^6He, ^{11}Li, ^{14}Be,
 - populates states of ^5He, ^{10}Li or ^{13}Be.
 - Experiments measure decay spectrum of ^5He
 $= ^4\text{He} + \text{n}$, $^{13}\text{Be} = ^{12}\text{Be} + \text{n}$, etc

- Can we predict any energy and angular correlations by Glauber model?

- Can we relate these correlations to the structure of the A+1 or the A+2 nucleus?
1N stripping from 6He g.s.

- Calculate overlaps: $\langle ^5$He($E_{\alpha-n}$) | 6He(gs) \rangle for a range of 5He($E_{\alpha-n}$) bin states,
- smooth histogram of Glauber bin cross sections.
- GSI data (H. Simon)

Promising technique!

Theory: $\sigma_{str}=137$ mb, $\sigma_{diff}=38$ mb
Expt: $\sigma_{str}=127\pm14$ mb, $\sigma_{diff}=30\pm5$ mb
from T. Tarutina thesis (Surrey)
1N stripping from ^{14}Be g.s.

- Calculate overlaps: $<^{13}\text{Be}(E_{\alpha-n}) |^{14}\text{Be}\text{(gs)}>$
- Inert-core $^{13,14}\text{Be}$ wfs.
- GSI data (H. Simon)
- See softer data, and not pronounced virtual-s and resonant-d peaks.
- New theory needed?

Theory: $\sigma_{\text{str}}=109\text{ mb}, \sigma_{\text{diff}}=109\text{ mb}$
Expt: $\sigma_{\text{str}}=125\pm19\text{ mb}, \sigma_{\text{diff}}=55\pm19\text{ mb}$
Elastic Breakup of 2N halo

- Elastic Breakup = Diffraction Dissociation:
 - all nuclear fragments survive along with the target in its ground state,
 - probes continuum excited states of nucleus.

- Need correlations in the three-body continuum of Borromean nuclei.
Continuum **Spatial** Correlations

from B. Danilin, I. Thompson, PRC 69, 024609 (2004)

- Now average scattering wave functions over angles of k_x and k_y, to see spatial correlations in continuum states in ^6He:

 T-basis 2+ plane wave

 T-basis 2+ resonance
‘True’ 3-body resonances?

- Expect continuum wave functions like:

\[
\psi(\rho, \Omega_5^{\rho}, E, \Omega_5^{\kappa}) \\
\propto \frac{1}{(\kappa \rho)^{5/2}} \sum_{K, \gamma} C_{K\gamma}(E) \psi_{K\gamma}^{R}(\rho) Y_{K\gamma}(\Omega_5^{\rho}) Y_{K\gamma}(\Omega_5^{\kappa})
\]

with

\[
|C_{K\gamma}(E)|^2 = \frac{\Gamma_{K\gamma}}{(E - E_0)^2 + \Gamma^2 / 4}
\]
Continuum Energy Correlations

- Now average scattering wave functions over angles of k_x and k_y, for fixed three-body energy E.
- Obtain similar plots for continuum energies.

- (Continuum momentum and angular correlations for later)
Continuum three-body wave functions

- Three-body scattering at energy E:

 \[\kappa = \sqrt{k_x^2 + k_y^2} = \sqrt{2mE/\hbar^2}, \]
 \[\alpha_\kappa = \tan(\frac{k_x}{k_y}) \]

- Plane wave 3-3 scattering states:

 \[\frac{(2\pi)^{-3}}{\sqrt{(\kappa \rho)^2}} \sum_{KLM L' L''} i^K J_{K+2}(\kappa \rho) Y^l_{KLM L} (\Omega_5^\rho) Y^l_{K'L'M' L} (\Omega_5^{\kappa})^* \]

- Dynamical solutions for scattering states:

 \[\Psi_{KJM}^T (x, y, \vec{k}_x, \vec{k}_y, \alpha_\kappa) = (\kappa \rho)^{-5/2} \sum_{K\gamma, K'\gamma'} \psi^J_{K, K' \gamma} (\kappa \rho) \gamma_{JM} (\Omega_5^\rho) \]
 \[\sum_{M_L M_S} \langle L' M_L' S' M_S' | J M \rangle Y^l_{L' M_L' L} (\Omega_5^{\kappa}) X_T \]
Virtual states & Resonances

from B. Danilin, I. Thompson, et al

 Virtual n-n pole

Effect of n-n 'resonance' in $E(c-n)$, $E(cn-n)$ coordinates
6He excitations & resonances

Pronounced 2^+ resonance

No pronounced 1^- resonance
Four-body dynamics

• High Energies (first order & all order):
 – T-matrix multiple scattering (Crespo)
 – Eikonal+Adiabatic (Tostevin, Al-Khalili)
 – Eikonal (Exact fragment) (Brooke, Tostevin, Al-Khalili)
 – Adiabatic (Johnson, Christley et al)

• All Energies (all orders), new challenges:
 – 4-body pseudo-state CDCC (Kamimura)
 – 4-body bin-states CDCC
 – “Two-nucleon states in deformed nuclei”
T-matrix expansions for breakup

^{11}Li on protons at 68 MeV/A

- Preliminary Method:
 - First-order expansion on fragment-target T-matrices
 - Pseudo-state continuum, smoothed.

- Strong sensitivity on the structure models for ^{11}Li: S, P0, P2

Crespo et al., PRC66 (2002) 021002
Data: RIKEN.
σ(θ) for 11Li(p,p′) at 68 MeV/u

- (a) Comparison of the theoretical calculations with experimental data
- Solid, dashed and dotted lines show the total, monopole and dipole angular distributions, respectively.
- In (b) and (c), solid lines show angular distributions for the monopole and dipole excitations, respectively.
- Dashed and dotted lines are contributions from the halo neutrons and the core nucleons.
Conclusions

- **CDCC method good for 2-cluster halo nuclei:**
 - Finite-range & recoil included
 - **Coulomb and nuclear** both approach convergence
 - Large radii and partial-wave limits needed, but feasible now
 - **Non-adiabatic treatment of Coulomb breakup**
 - Multistep effects manifest from all final-state interactions

- **Extensions:**
 - Deformed cluster models: Summers & Nunes at MSU
 - Three-cluster projectiles (e.g. two neutron halo nuclei): Kamimura et al.