A. O. Macchiavelli

Lawrence Berkeley National Laboratory

Workshop on Pairing Degrees of Freedom in Nuclei and the Nuclear Medium

INT - University of Washington – November 14-17, 2005
Motivation

N=Z nuclei, unique systems to study \(np \) correlations

As you move out of N=Z \(nn \) and \(pp \) pairs are favored

Role of isoscalar (\(T=0 \)) and isovector (\(T=1 \)) pairing

Large spatial overlap of \(n \) and \(p \)

Pairing vibrations (normal system)

Pairing rotations (superfluid system)

Does isoscalar pairing give rise to collective modes?

What is (are) the “smoking-gun(s)”?

Binding energy differences

Ground states of odd-odd self-conjugate nuclei

Rotational properties: moments of inertia, alignments

Two-particle transfer cross-sections
NOTE ON THE TWO-NUCLEON STRIPPING REACTION

SHIRO YOSHIDA

Radiation Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania

Received 9 February 1962

Abstract: The magnitude of the two-nucleon stripping reactions is calculated using the pairing interaction model. The calculation also is applied to final states of collective type. For some types of reaction a collective enhancement of the reaction cross section is predicted.
PAIR CORRELATIONS AND
DOUBLE TRANSFER REACTIONS

A. BOHR
THE NiELS BOHR INSTITUTE,
UNIVERSITY OF COPENHAGEN,
COPENHAGEN, DENMARK

ISOVECTOR PAIRING VIBRATIONS

D.R. BES
Comision Nacional de Energia Atomica, Buenos Aires, Argentina and
State University of New York at Stony Brook, Physics Department, Stony Brook, New York 11794, USA and
CERN, Geneva, Switzerland

and

R.A. BROGLIA
The Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark and
State University of New York at Stony Brook, Physics Department, Stony Brook, New York 11794, USA

and

Ole HANSEN and O. NATHAN
The Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark.
Two nucleon transfer reactions

Generalized densities $a+a^+$, aa represent the pair field and in close analogy to the collective excitations corresponding to the ordinary density, they can give rise to collective modes.

Two particle transfer reactions like (t,p) or (p,t), where 2 neutrons are deposited or picked up at the same point in space provide an specific tool to probe the amplitude of this collective motion. The transition operator $\langle f|a^+a^+|i\rangle$ will be proportional to the pair density of the nucleus.

$$\Delta = G \langle \sum a^+_v a^+_\bar{v} \rangle$$
Collective pairing vibrations near closed shells

Collective excitations have a phonon-like spectrum

\[\Omega G / D < 1 \]

\[\hbar \omega \sim D \left(1 - x\right)^{1/2} \]

\[x = \frac{G}{G_{\text{crit}}} \]
Study binding energies around closed shells (^{56}Ni)

$T=0$ Energy comparable with single particle separation - low collectivity.

$T=1$ Energy consistent with collective excitations.
Measure the np transfer cross section to $T=1$ and $T=0$ states

Both absolute $\sigma(T=0)$ and $\sigma(T=1)$ and relative $\sigma(T=0) / \sigma(T=1)$ tell us about the character and strength of the correlations.
n-p Pair Transfer Probability

$G^{T=1} = 0.33 \text{ MeV}$

Single Particle Energies ^{57}Ni Levels

- $T=1$ Pair Transfer
- $T=0$ Pair Transfer

Initial State $<^{56}\text{Ni} Q=1 |$

Final State $<^{58}\text{Cu} Q=1 |$

Final State $<^{58}\text{Cu} Q=2 |$

R. Chasman
$^{40}\text{Ca}(^{3}\text{He},p)^{42}\text{Sc} \ 200\text{MeV}$

θ_{lab} (degrees)

$L=0$ transfer
Study of the $^{56}\text{Ni}(d,p)^{57}\text{Ni}$ Reaction and the Astrophysical $^{56}\text{Ni}(p,\gamma)^{57}\text{Cu}$ Reaction Rate

K. E. Rehm,¹ F. Borasi,¹ C. L. Jiang,¹ D. Aekermann,¹ I. Ahmad,¹ B. A. Brown,² F. Brumwell,¹ C. N. Davids,¹ P. Decrock,¹ S. M. Fischer,¹ J. Görres,³ J. Greene,¹ G. Hackmann,¹ B. Harss,¹ D. Henderson,¹ W. Henning,¹ R. V. F. Janssens,¹ G. McMichael,¹ V. Nanal,¹ D. Nisius,¹ J. Nolen,¹ R. C. Pardo,¹ M. Paul,⁴ P. Reiter,¹ J. P. Schiffer,¹ D. Seweryniak,¹ R. E. Segel,⁵ M. Wiescher,³ and A. H. Wuosmaa¹

¹Argonne National Laboratory, Argonne, Illinois 60439
²Michigan State University, East Lansing, Michigan 48824
³University of Notre Dame, South Bend, Indiana 46556
⁴Hebrew University, Jerusalem, Israel
⁵Northwestern University, Evanston, Illinois 60208

(Received 29 August 1997)

\[\sim 10^5 \text{ /sec} \]
From ATLAS

Degrader 10mg/cm²

\[^{56}\text{Ni} \xrightarrow{\text{Reaction}} ^{58}\text{Cu} \]

\[^{3}\text{He} \]

Si detector 500µ
16x16 ~1sr

Gas cell ~100µg/cm²

20 counts/day
Proof of principle

A.O.Macchiavelli1, E.Rehm2, A.Görgen1, P.Fallon1, M.Cromaz1, C.N.Davis2, A.Heinz2, R.V.F.Janssens2, C.L.Jiang2, E.F.Moore2, G.Mukherjee2, R.Pardo2, D.Seweryniak2, J.P.Schiffer2, J.Cizewski3, J.Thomas3, M.Paul4

1Nuclear Science Division, Lawrence Berkeley National Laboratory
2Physics Division, Argonne National Laboratory
3Department of Physics and Astronomy, Rutgers University
4Hebrew University
$^{40}\text{Ca}(^3\text{He},p)$ @ 220 MeV

Raw

FMA Gated

[Graph showing energy spectra and labels for various isotopes such as ^{39}Si, ^{39}Ar, ^{39}S, ^{40}Ca, with peaks labeled as 0^+, 1^+, and $0^+(3^+)$.]
What is our reference?

Single-particle estimate $\sim (\text{spin})x(^3\text{He})x(\text{LS} \rightarrow jj)$
Systematic of \(^3\text{He},p\) and \((t,p)\) reactions in stable N=Z nuclei

![Graph showing systematic of \(^3\text{He},p\) and \((t,p)\) reactions in stable N=Z nuclei.](image)
Ratios using both (t,p) and (3He,p). The blue line is the sp estimate assuming that the j2 configuration varies from an s1/2 to a j>>1
Summary and Conclusions

- **Ground State Binding Energies (pair gaps)**
- **Energies of T=0 T=1 in N=Z nuclei**
- **Excitation spectra near shell gaps (pair vibrations)**

Evidence for full isovector T=1 pairing (nn,np,pp) - charge independence.

BE differences can be described by an appropriate combination of the symmetry energy and the isovector pairing energy.

No evidence for a T=0 deuteron-like pairing condensate in N=Z nuclei. The T=0 states in an odd-odd N=Z nucleus can be characterized as a seniority 2 state (as in any other odd-odd nucleus).

Inverse kinematics - Successful test with stable beams

Next step - Measure “collectivity” with transfer reactions (^3He,p)

Approved ATLAS runs with ^44Ti and ^56Ni beams

“Role of pairing phonons near ^40Ca and ^56Ni”
And looking ahead