Correcting for self-pairing and poles in the PNP-HFB method

I. Formal aspects

Thomas Duguet and Michael Bender

NSCL and Dept. of Physics and Astronomy, MSU, USA

Supported by the NSF under Grant No. PHY-0456903

Special thanks to J. Dobaczewski, W. Nazarewicz, P.-G. Reinhard and M. V. Stoitsov

Pairing degrees of freedom in nuclei and the nuclear medium, Seattle, nov 14-17 2005
Outlook

I. HFB and PNP-HFB methods

II. Divergences and poles in the PNP-HFB method

III. Physical interpretation of the problem

IV. Formal solution to it

V. Application in one realistic case

VI. Conclusions: more advanced problems to be solved
Pairing

I. Impact of pairing correlations on nuclear structure/neutron stars properties

*Individual excitation spectra
*Odd-even mass staggering
*Rotational and low-lying vibrational states as well as shape isomers
*Width of deep-hole states
*Matter density
*Pair transfer
*Glitches in the inner crust of neutron stars
*Cooling of neutron stars: emission processes and heat diffusion

II. Methods for realistic calculations of finite nuclei

*Symmetry conserving: HF + shell-model + quadrupole correlations Volya et al. (2001)

Pillet et al. (2002)

*Symmetry breaking: HFB + PNP + Pairing vib. + def. and coupl. to surf/vol vib.

III. PNP-HFB/HFBCS calculations with DD forces within the full s.p. space

*GCM+PAV with Skyrme + DDDI pairing Heenen et al. (1993)

*PAV/VAP with Gogny Anguiano et al. (2001)
Realistic PNP-HFB calculations of nuclear properties

I. Abilities beyond HFB

* Restore a good quantum number
* VAP/constr. calc. + PAV - good treatment of correlations in the weak symmetry breaking regime
* VAP: correlations in the wave-function near closed shells (other observables than energies)
* PNP practical when coupled to GCM
* PNP + Pairing vibrations: additional correlations + excited states

II. Canonical basis of the HFB state

HFB

\[|\Phi(\varphi)\rangle = \prod_{\mu > 0} (u_\mu + v_\mu e^{2i\varphi} a_\mu^\dagger a_\mu^\dagger) |0\rangle \]

Observable are independent of \(\varphi \):

\[E = \frac{\langle \Phi(0)|H|\Phi(0)\rangle}{\langle \Phi(0)|\Phi(0)\rangle} \]

PNP-HFB

\[|\Psi^N\rangle = \hat{P}^N |\Phi(0)\rangle = \frac{1}{2\pi} \int_0^{2\pi} d\varphi e^{-i\varphi N} |\Phi(\varphi)\rangle \]

Diagonal density matrix and pairing tensor:

\[\rho_{\varphi \mu \mu} = \rho_{0 \mu \mu} = v_\mu^2 \]

\[\kappa_{\varphi \mu \bar{\mu}} = \kappa_{0 \mu \bar{\mu}} = u_\mu v_{\bar{\mu}} \]

\[\kappa_{\varphi \mu \bar{\mu}}^* = \kappa_{0 \mu \bar{\mu}}^* = u_\mu v_{\bar{\mu}} \]

Transition density matrix and pairing tensor:

\[\rho_{\mu \mu}(\varphi) = v_\mu^2 e^{2i\varphi} / (u_\mu^2 + v_\mu^2 e^{2i\varphi}) \]

\[\kappa_{\mu \mu}^{10}(\varphi) = u_\mu v_{\bar{\mu}} e^{2i\varphi} / (u_\mu^2 + v_\mu^2 e^{2i\varphi}) \]

\[\kappa_{\mu \mu}^{01}(\varphi) = u_\mu v_{\bar{\mu}} / (u_\mu^2 + v_\mu^2 e^{2i\varphi}) \]

\[E^N = \frac{\langle \Phi(0)|H\hat{P}^N|\Phi(0)\rangle}{\langle \Phi(0)|\hat{P}^N|\Phi(0)\rangle} \]
Problem with PNP-HFB method I

PES: ^{18}O

3D PNP-HFBLN (PAV)

SLy4 + ULB

9 φ-integration points

*Typical of calculations performed so far

*Results look very reasonable
Problem with PNP-HFB method II

PES: ^{18}O

3D PNP-HFBLN (PAV)

SLy4+ULB

9/99 φ-integration points

Divergence when a pair of states crosses λ, Anguiano et al. (2001)

Offset in the PES before and after the crossing, Dobaczewski et al. priv. comm.

More dramatic consequences for VAP calculations
What are HFB and PNP-HFB really about?

I. HFB: energy functional of ρ and κ (bilinear here)

$$
\mathcal{E} [\rho, \kappa, \kappa^*] = \sum_{ij} t_{ij} \rho_{ji} + \sum_{ijkl} \left[w_{ijkl}^{\rho\rho} \rho_{ji} \rho_{lk} + w_{ikjl}^{\kappa\kappa} \kappa_{ik} \kappa_{jl} \right] \neq \frac{\langle \Phi(\varphi)|H|\Phi(\varphi)\rangle}{\langle \Phi(\varphi)|\Phi(\varphi)\rangle}
$$

II. PNP-HFB: \mathcal{E}^N is real and independent of the choice of axis in gauge space

$$
\mathcal{E}^N = \frac{\int_{0}^{2\pi} d\varphi \ e^{-i\varphi N} \mathcal{E} [\varphi] \ I(\varphi)}{\int_{0}^{2\pi} d\varphi \ e^{-i\varphi N} I(\varphi)} \quad \text{with} \quad I(\varphi) = \langle \Phi(0)|\Phi(\varphi)\rangle = \prod_{\nu > 0} (u^2_\nu + v^2_\nu e^{2i\varphi})
$$

$*$\mathcal{E} [\varphi] \equiv "\langle \Phi(0)|H|\Phi(\varphi)\rangle" \rightarrow \mathcal{E} [\rho, \kappa, \kappa^*]$ for $\varphi \rightarrow 0$

$*$\mathcal{E} [\varphi]$ might depend on $[\rho_0, \kappa_0, \kappa_0^*], [\rho_\varphi, \kappa_\varphi, \kappa_\varphi^*], [\rho(\varphi), \kappa^{10}(\varphi), \kappa^{01}(\varphi)]$

$*$No fully satisfactory constructive framework exists so far
III. Motivations

<table>
<thead>
<tr>
<th>HFB</th>
<th>PNP-HFB</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{E} [\rho, \kappa, \kappa^*]$</td>
<td>$\mathcal{E} [\varphi]$</td>
</tr>
</tbody>
</table>

\[
\langle \Phi(0)|V^{(2)}|\Phi(\varphi)\rangle \text{ (GWT)} \quad \rho \rho / \kappa^* \kappa \quad \rightarrow \quad \rho(\varphi) \rho(\varphi) / \kappa^{01}(\varphi) \kappa^{10}(\varphi)
\]

\[
\langle \Phi(0)|V^{(3)}|\Phi(\varphi)\rangle \text{ (GWT)} \quad \rho \rho \rho / \kappa^* \kappa \rho \quad \rightarrow \quad \rho(\varphi) \rho(\varphi) \rho(\varphi) / \kappa^{01}(\varphi) \kappa^{10}(\varphi) \rho(\varphi)
\]

2-body correl. (MBPT) \quad $\rho \rho \rho^\alpha$ \quad \rightarrow \quad $\rho(\varphi) \rho(\varphi) \rho_0^\alpha$ \quad T. D. (2004)

Pairing regularization \quad $\kappa^* \kappa \rho^\gamma$ \quad \rightarrow \quad $\kappa^{01}(\varphi) \kappa^{10}(\varphi) \rho_0^\gamma$ \quad T. D. (unpublished)

Coulomb Exchange (Slater) \quad $\rho_p \rho_p^{1/3}$ \quad \rightarrow \quad $?$

IV. Bilinear functional "from $V^{(2)}"$

\[
\mathcal{E}^N = \int_0^{2\pi} d\varphi \frac{e^{-i\varphi N}}{2\pi D_N} \left[\sum_{\mu} t_{\mu\mu} \rho_{\mu\mu}(\varphi) + \sum_{\mu\nu} w^{\rho\rho}_{\mu\nu\mu\nu} \rho_{\mu\mu}(\varphi) \rho_{\nu\nu}(\varphi) + \sum_{\mu\nu} w^{\kappa\kappa}_{\mu\nu\mu\nu} \kappa^{01}_{\mu\mu}(\varphi) \kappa^{10}_{\nu\nu}(\varphi) \right] \prod_{\nu > 0} (u_{\nu}^2 + v_{\nu}^2 e^{2i\varphi})
\]

*Potential divergences from terms such that $\nu = \mu, \bar{\mu}$
*Cancel out if $\bar{w}^{\rho\rho}_{\mu\nu\mu\nu} = \bar{w}^{\kappa\kappa}_{\mu\nu\mu\nu}$
*The problem is "conjugated pair additive"
Complex plane analysis

Dobaczewski et al. unpublished

\[Z = |Z| \text{Exp}(i \phi) \]

\[\mathcal{E}[Z] \]

Poles: \(Z_k = \pm i |u_k|/|v_k| \)

Integration circle: \(|r| = 1\)

\[z = e^{i \phi} \]

\(*\mathcal{E}^N: \) poles at \(z_{\mu}^\pm = \pm i |u_{\mu}|/|v_{\bar{\mu}}| \) and \(z = 0 \)

\(*\text{Cauchy: } |z| < 1 \) contribute to \(\mathcal{E}^N \)

\(*\text{Only } z = 0 \) contributes for \(H \)

\(*\text{Divergence in } \mathcal{E}^N \) when poles cross \(C_1 \)

\(*\text{Step left in } \mathcal{E}^N \) after the crossing

\(*\text{Is that physical?} \)

\(*\text{Is there a solution to those problems?} \)
I. HFB

*Self-interaction issue \(\mathcal{E}_\mu = t_{\mu\mu} v_\mu^2 + w_{\mu\mu\mu\mu}^\rho v_\mu^4 \neq t_{\mu\mu} \rho_{\mu\mu} \)

*Self-pairing issue

\[
\mathcal{E}_{\mu\bar{\mu}} - (\mathcal{E}_\mu + \mathcal{E}_{\bar{\mu}}) = \left(w_{\mu\bar{\mu}\mu\bar{\mu}}^{\rho\rho} + w_{\mu\mu\bar{\mu}\bar{\mu}}^{\rho\rho} \right) v_\mu^4 + 4 w_{\mu\bar{\mu}\mu\bar{\mu}}^{\kappa\kappa} u_{\mu}^2 v_\mu^2 \neq \bar{w}_{\mu\bar{\mu}\mu\bar{\mu}}^{\rho\rho} \rho_{\mu\bar{\mu}\mu\bar{\mu}}^{(2)}
\]

where \(\rho_{\mu\bar{\mu}\mu\bar{\mu}}^{(2)} = \frac{\langle \Phi(\varphi) | a_\mu^\dagger a_{\bar{\mu}}^\dagger a_{\bar{\mu}} a_\mu | \Phi(\varphi) \rangle}{\langle \Phi(\varphi) | \Phi(\varphi) \rangle} = v_\mu^2 \)

*Spurious contributions to the energy

*Pair additive problem

*Self-interaction is well known in Kohn-Sham DFT, Perdew and Zunger (1981)

*None of the two has been explored in nuclear structure calculations so far
II. PNP-HFB

*Self-interaction issue

\[
\mathcal{E}^N_{\mu} = \int_0^{2\pi} d\phi \frac{e^{-i\phi N}}{2\pi D_N} \left[t_{\mu\mu} + w^{\rho\rho}_{\mu\mu\mu\mu} \frac{v^2_{\mu} e^{2i\phi}}{u^2_{\mu} + v^2_{\mu} e^{2i\phi}} \right] v^2_{\mu} e^{2i\phi} \prod_{\nu \neq \mu > 0} (u^2_{\nu} + v^2_{\nu} e^{2i\phi}) \neq t_{\mu\mu} \rho_{\mu\mu}^N
\]

*Self-pairing issue

\[
\mathcal{E}^N_{\mu\mu} - (\mathcal{E}^N_{\mu} + \mathcal{E}^N_{\mu}) = \int_0^{2\pi} d\phi \frac{e^{-i\phi N}}{2\pi D_N} \left[(w^{\rho\rho}_{\mu\mu\mu\mu} + w^{\rho\rho}_{\mu\mu\mu\mu}) v^2_{\mu} e^{2i\phi} + 4 w^{\kappa\kappa}_{\mu\mu\mu\mu} u^2_{\mu} \right] \frac{v^2_{\mu} e^{2i\phi}}{u^2_{\mu} + v^2_{\mu} e^{2i\phi}} \prod_{\nu \neq \mu > 0} (u^2_{\nu} + v^2_{\nu} e^{2i\phi}) \neq \bar{w}^{\rho\rho}_{\mu\mu\mu\mu} \rho_{\mu\mu\mu\mu}^N
\]

where

\[
\rho_{\mu\mu\mu\mu}^N(2) = \frac{\langle \Psi^N | a_{\mu}^\dagger a_{\mu}^\dagger a_{\mu} a_{\mu} | \Psi^N \rangle}{\langle \Psi^N | \Psi^N \rangle} = v^2_{\mu} \int_0^{2\pi} d\phi \frac{e^{-i\phi N}}{2\pi D_N} e^{2i\phi} \prod_{\nu \neq \mu > 0} (u^2_{\nu} + v^2_{\nu} e^{2i\phi}) = \rho_{\mu\mu}^N
\]

*Pair additive problem

*More dramatic than at the mean-field level
A minimal solution to the problem: motivation from H

*Pair additive problem \implies Toy model with only one pair rotated: \[
\left(\begin{array}{c}
u \
\varphi
\end{array}\right) = \left(\begin{array}{c}1 \\ 0 \\
\exp(2i\varphi)
\end{array}\right)
\]

\[
|\phi(\varphi)\rangle = (u + v\exp(2i\varphi) a\dagger a\dagger) \prod_{\nu\neq\mu>0} (u + v\exp(2i\varphi) a\dagger a\dagger)|0\rangle = e^{i\varphi} \cos \varphi |\phi(0)\rangle - ie^{i\varphi} \sin \varphi |\phi(\frac{\pi}{2})\rangle
\]

*Using the Standard Wick Theorem (SWT)

\[
\mathcal{E}_{R/R}(\varphi)_{SWT} = e^{i\varphi} \cos \varphi \mathcal{E}_{R/R}(0)_{SWT} - ie^{i\varphi} \sin \varphi \mathcal{E}_{R/R}(\frac{\pi}{2})_{SWT}
\]

*Using the GWT

\[
\mathcal{E}_{R/R}(\varphi)_{GWT} = \mathcal{E}_{R/R}(\varphi)_{SWT} + \left(w_{R/R/R/R}^{R/R} + w_{R/R/R/R}^{R/R} + w_{R/R/R/R}^{R/R} + w_{R/R/R/R}^{R/R} \right) u^2 v^2 \frac{e^{2i\varphi} (e^{2i\varphi} - 1)}{u^2 + v^2 e^{2i\varphi}}
\]

\[
\mathcal{E}_{K/K}(\varphi)_{GWT} = \mathcal{E}_{K/K}(\varphi)_{SWT} - 4 w_{K/K/R/R}^{K/K} u^2 v^2 \frac{e^{2i\varphi} (e^{2i\varphi} - 1)}{u^2 + v^2 e^{2i\varphi}}
\]

*Spurious terms are directly related to the use of the GWT at finite φ

*Identification of the spurious terms to be removed

*Doing so does not change the HFB functional ($= \text{functional at } \varphi = 0$)

*Correct dramatic self-interaction/-pairing effects at the PNP-HFB level but not at the HFB level
Spurious contribution to E^N in realistic PNP-HFB

I. Integration in real space

$$E^N_{spu.} = \sum_{\mu>0} \left[(w_{\mu} + w_{\mu}^{\overline{\mu}} + w_{\mu}^{\overline{\mu}} + w_{\mu}^{\overline{\mu}}) - 4 w_{\mu}^{\overline{\mu}} \right] u_{\mu}^2 v_{\overline{\mu}}^4 \int_{0}^{2\pi} d\varphi \frac{e^{-i\varphi} e^{2i\varphi} - 1}{2i N} \frac{e^{2i\varphi}}{(u_{\mu}^2 + v_{\overline{\mu}}^2 e^{2i\varphi})^2} \prod_{\nu>0} (u_{\nu}^2 + v_{\overline{\nu}}^2 e^{2i\varphi})$$

II. Integration in the complex plane

*Pole at $0 < |z_{\mu}^-| < 1 \implies$ remove completely the contribution of the pole to E^N

$$Re_{spu.}(z_{\mu}^\pm) = -\left(\frac{v_{\mu}}{u_{\mu}} \right)^N \frac{1 + (-1)^N}{2i N} \prod_{\nu \neq \mu > 0} \frac{u_{\nu}^2 v_{\overline{\nu}}^2 - v_{\nu}^2 u_{\overline{\mu}}^2}{v_{\overline{\mu}}^2}$$

*Pole at $z = 0$ of order $N - 1 \iff$ more than just removing the spurious poles!

$$Re_{spu.}^2(0)_{\mu} = -\frac{1}{u_{\mu}^2} \prod_{\nu \neq \mu > 0} u_{\nu}^2$$

$$Re_{spu.}^N(0)_{\mu} = -\frac{v_{\mu}^2}{u_{\mu}^2} Re_{spu.}^{N-2}(0)_{\mu} + \frac{1}{u_{\mu}^2} \left[\sum_{\{\lambda\}_{n-2}} \prod_{\nu \neq \mu,\{\lambda\}} u_{\nu}^2 \prod_{\{\lambda\}} v_{\lambda}^2 - \sum_{\{\lambda\}_{n-1}} \prod_{\nu \neq \mu,\{\lambda\}} u_{\nu}^2 \prod_{\{\lambda\}} v_{\lambda}^2 \right]$$
Conclusions and perspectives

I. PNP-HFB/PAV calculations

* Complete solution to the problem of divergences and jumps
* Solution exists for any type of higher-order density dependences
* Quantitative calculations: order of magnitude, stability, impact (see next)

II. PNP-HFB/VAP calculations

* The correction to \mathcal{E}^N is precise and stable enough to be applied to VAP calculations
* Corrections to the one-body equations need to be derived

III. Generator Coordinate Calculations and projection on J

* Impact on configuration mixing calculations remains to be seen
* The method needs to be generalized to different "left" $\langle \Phi_L(0) \rangle$ and "right" $\langle \Phi_R(0) \rangle$ vacua