OPEN QUESTIONS IN JETS IN SCET

INT SEMINAR
19 MAY 2005
CHRISTOPHER LEE

"SCET was made for jets!"
-M. Wise

(Alternative talk title: Why M. Wise no longer works on SCET...)

Outline:

I KINEMATICS
II FACTORIZATION OF DECAY RATE OF $\pi \rightarrow JETS$
III JET ENERGY DISTRIBUTION
IV THRUST AND OTHER DISTRIBUTIONS
V UNIVERSAL NP EFFECTS?
VI CONCLUSION AND OPEN QUESTIONS

I KINEMATICS
$e^+ e^- \rightarrow \text{hadrons}$

or $Z \rightarrow \text{hadrons}$ (focus on 2-jet-like events)

$E_{\text{hadrons}} < E_{\text{Max}}$

$E, S, \lambda = \sqrt{E^2 - m^2}$

Steven Weinberg (1972): jet outrun:
All but E_{hadrons} of the total energy goes into two cones of angle $< S$.
II \ DECAY RATES AND FACTORIZATION

recall total hadronic decay rate of Z goes due

$$\Gamma(Z \rightarrow \text{hadrons}) = \Gamma_{\text{pt.}}(Z \rightarrow \text{partons}) + \Delta\Gamma_{\text{n.p.}}$$

in perturbation theory leading nonperturbative correction given by

$$\sim \langle 0\mid \text{Tr}(\text{C}_{\mu \nu}) \mid 0 \rangle$$

$\Delta\Gamma_{\text{n.p.}}$ suppressed by $(\frac{\Lambda}{M_Z})^4$ relative to $\Gamma_{\text{pt.}}$.

\rightarrow Strategy: look for larger NP effects in less inclusive variables

Start with:

$$d\Gamma = \frac{1}{2M_Z} \sum \sum c_x \left| \langle x \mid j^\mu, c_\mu \mid 0 \rangle \right|^2 \left(2\pi \right)^n \delta^n(p_e - p_f)$$

$Q^2 \Gamma_{\mu\nu}^q$ $P_M^\mu = q_x y^\mu + q_e y^\mu$

match

$\text{SEC}_{T_q} \left[\delta_{\text{Whitney}} Y_n \Gamma_{\mu\nu}^{T_q} C(p, p^\prime) Y^\dagger \right] Y_{n^\dagger} [W^\dagger \delta_q^\dagger]$

New collinear and ultra-light sectors are decoupled

\rightarrow split final state into $J_n, J_{\bar{n}}, X_u, X_s$ sectors

$$d\Gamma = \frac{1}{2M_Z} \sum \sum c_x \left| \langle x \mid J_n, X_u \rangle \delta_{\text{Whitney}} Y_n \Gamma_{\mu\nu}^{T_q} C(p, p^\prime) Y^\dagger \right|^2 \left(2\pi \right)^n \delta^n(p_e - p_f - p_{\bar{n}} - p_{\mu\nu})$$

$\sqrt{\text{factorize}}$
\[d\Gamma = \frac{1}{6m_e^2} \sum_{\text{F, S}} \sum_{\text{F, S}} |\langle J_\text{F, S} | T^{\text{F, S}}_0 \rangle|^2 \langle W^+_0 | \tilde{W}^-_0 \rangle^2 \]

\[\times |\langle X_{\text{us}} | Y_{\text{us}} Y_{\text{us}}^+ | 0 \rangle|^2 \]

\[= \frac{1}{(2\pi)^9} 8^4 \delta^4 (p_1 - p_2 - p_3 - p_4) \]

NP effects come from here

Master Formula

Question:
Is it valid to split to color rigid state |X\rangle into the (colored) partonic states |F_\text{us} J_0 | X_{\text{us}} \rangle? Are the sums over hadronic or partonic states equivalent?

Answer is probably "no," so how much error is introduced into final result?

Return to these (?)'s in Sec. VI

III Jet Energy Distribution

Measure \(E_J \), energy of one of the jets.

Work to leading order in \(\alpha_s \) → just make \(q_\tilde{\tau}, \tilde{q}_\text{in} + \tilde{X}_{\text{us}} \) in final state.

Insert \(dE_J S(E_J - p_\tilde{\tau}^0) \) in master formula.

Question: Why not include \(u \bar{u} \) particles inside jet?

Answer in Sec. VI

\[\Rightarrow \frac{d\Gamma}{dE_J} = \frac{1}{6m_e^2} \sum_{\text{F, S}} \sum_{\text{F, S}} \left| \frac{d^3p_\tilde{\tau}}{d^3p_{\tilde{\tau}}} \right|^2 \left| \frac{d^3p_{\tilde{\tau}}}{d^3p_{\tilde{\tau}}} \right|^2 \langle \tilde{q}_{\text{in}} \tilde{q}_{\text{in}} | \tilde{W}^-_0 \rangle^2 \]

\[\times \sum_{\text{F, S}} \left| \langle X_{\text{us}} | Y_{\text{us}} Y_{\text{us}}^+ | 0 \rangle \right|^2 \]

\[\times \frac{1}{(2\pi)^9} 8^4 \delta^4 (p_1 - p_2 - p_3 - p_4) S(E_J - p_\tilde{\tau}^0) \]
To perform phase space integrals, align p_0 along \overline{n} such that:
\[
\begin{align*}
\bar{p}_t^+ &= \bar{p}_x^+ + k_s^+ \\
\bar{p}_x^+ &= k_x^+ \\
\bar{p}_x^- &= 0 \\
\bar{p}_x^- &= \bar{p}_x^- + k_s^- \\
\bar{p}_x^- &= 0 \\
\bar{p}_x^- &= \bar{p}_x^- + k_s^- \\
\end{align*}
\]

Then momentum-conserving delta function enforces:
\[
\begin{align*}
\delta(E_3 - \bar{p}_t^0) &= \delta(E_3 - \bar{p}_t^x) \\
&= \delta(E_3 - \bar{p}_x^x + k_s^x) \\
&= \delta(E_3 - M_x^2 + k_s^x) \\
&= \delta(E_3 - M_x^2 + k_s^x/2) \\
\end{align*}
\]

Thus we obtain, to leading-order in x_s,
\[
\frac{d\Gamma}{dE_3} = \Gamma^{10}(z \rightarrow q \bar{q}) \delta(M_x^2 - E_3)
\]

in pert. th.

where
\[
\delta(M_x^2 - E_3) = \sum_{X_{us}} \delta(M_x^2 - E_3 - k_s^x/2) \frac{1}{N_e} \langle 0 | \gamma \gamma_{\mu} Y_{\nu} | X_{us} \rangle
\]

Consider screening distribution over a region
\[
\Lambda_{\alpha0} \ll \Lambda \ll M_x
\]
\(S(\frac{M^2}{2} - E_3) = S(\frac{M^2}{2} - E_3) - S'(\frac{M^2}{2} - E_3) \frac{\langle k_{us}^+ \rangle}{2} + \ldots \)

where \(\langle k_{us}^+ \rangle = \frac{1}{N_c} \sum_{k_{us}} \langle \theta_1 \theta_2 \cdots \theta_N | k_{us}^+ | 0 \rangle \)

\(\Rightarrow \) leading NP correction to smeared distribution is \(\delta \left(\frac{N_{c_0}}{\Delta} \right) \)

II OTHER VARIABLES

Hemisphere \(T = \frac{1}{M_2} \max_i \sum_{i} |\vec{p}_i \cdot \hat{t}| \quad (2 \text{ back-to-back jets } \Rightarrow T=1) \)

\(\Rightarrow \) sum over all particles in final state

\(^{\text{a}} \) vs. \(^{\text{b}} \) in hemispheres

jet masses \(M_a^2, M_b^2 \) (total invariant mass in two hemispheres defined by the hemi-axes)

\(M_2^2 = M_a^2 + M_b^2 \)

other:

\(C \) parameter, jet broadening, etc.
UNIVERSALITY IN NP EFFECTS?

Suppose derivation in Sec. III for T, M_s^2, etc.

$$\frac{dP}{dT} = \Gamma_{\mu \nu}^{\mu \nu \tau} S_{\tau}(1-T)$$

$$= S(1-T) - S'(1-T) \frac{1}{M_2} \langle k^{(a)}_{\mu} + k^{(b)}_{\mu} \rangle$$

Different components in a, b hemispheres

\Rightarrow not same as for E_3 dist.

$$\frac{dP}{dM_s^2} = \Gamma_{\mu \nu}^{\mu \nu \tau} \left[S(M_s^2) - M_2 S'(M_s^2) \langle k^{(a)}_{\mu} + k^{(b)}_{\mu} \rangle \right]$$

\Rightarrow same as for T!

Other distributions do not have universal NP constraints, only T and M_s^2

\Rightarrow consistent with data from DELPHI (2003)
VI. Conclusions and Questions

Answer to Q #2: in jet energy distribution, insert instead:

\[\delta \left(E_3 - p_T^2 \right) \]

which becomes

\[\delta \left(E_3 - \frac{M_2^2}{2} + \frac{k_{\perp}^2}{2} - \frac{k_{\perp}\left(\cos(\phi) + k_{\perp} \cos(\phi) \right)}{2} \right) \]

\[= \delta \left(E_3 - \frac{M_2^2}{2} + \frac{k_{\perp}^2 (\cos(\phi))}{2} - \frac{k_{\perp} \cos(\phi)}{2} \right) \]

\[\downarrow \text{ limit } \lambda \to 0 \text{, or c.m. any } s \to 0 \]

\[\delta \left(E_3 - \frac{M_2^2}{2} + \frac{k_{\perp}^2}{2} \right) \quad \text{same as before} \]

Mumbling about Q #1:

how much do color recombination effects shift above distributions?

\[q_{\bar{n}} \quad \text{our jets are colored!} \]

\[\leftrightarrow \quad \text{any correlations between } n, \bar{n} \text{ jets are suppressed in SCET} \]

We assume these do not shift distributions \(\frac{dN}{dE_3} \), etc.

by as large an amount as \(\frac{N_{\text{Born}}}{\Delta} \) effects.

(cf. Steffen-Karchenby, 1999)

Started with \[\sum_x \langle x | j_{\mu} e^{-10} \rangle \] (hadronic states)

\[\sum_x \sum_{p'} \langle x | p \rangle \langle p | j_{\mu} e^{-10} \rangle \] (hadronic states)

would like to quantify size of effects from color recombination/jet conditions

ignored these effects