Equation of state under the conditions of NSE

D.K. Nadyozhin, A.V. Yudin

Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
EOS for NSE deals with

- Large variety of nuclides: at low entropies ($S \lesssim 2$) all the nuclides up to the neutron-dreep boundary could be important (appropriate mass formulae are required)
- Excitation of nuclides (partition functions!)
- Degeneration of free neutrons and protons
- Full Fermi-Dirac statistics for e^-e^+ component
- Non-ideal effects: Coulomb interactions in multi-charge plasma
 Nucleon-nucleon strong interactions at $\rho \gtrsim 10^{13}$ g/ccm
Our Project

To analyze the impact of above issues on thermodynamics of collapsing matter

To construct 3-parametric tables for free energy and to supply them with a smooth interpolation procedure (spline interpolation algorithm)

To begin a new series of calculation of the collapse focusing on the first neutrino-transparent stage and kinetics of neutronization

\[
\begin{align*}
\text{Free energy: } F(T, \rho, \theta) \\
\theta \equiv N_n^0 / N_p \\
P &= \rho^2 \left(\frac{\partial F}{\partial \rho} \right)_{T, \theta} \\
S &= -\left(\frac{\partial F}{\partial T} \right)_{T, \theta} \\
E &= F + TS
\end{align*}
\]
Equations for NSE

\[Y_i = \frac{n_i m_u}{\rho} \]

\[\psi = \frac{\mu - mc^2}{kT} \]

\[Y_{A,Z} = \omega_{A,Z} \mu_{A,Z}^{3/2} \frac{m_u}{\rho \lambda_T^3} \exp \left[(A-Z)\psi_n + Z\psi_p + \frac{Q_{A,Z}}{kT} \right] \]

\[
\begin{cases}
Y_n + \sum_{A,Z} (A-Z)Y_{A,Z} = \frac{\theta}{1+\theta} \\
Y_p + \sum_{A,Z} Z Y_{A,Z} = \frac{1}{1+\theta}
\end{cases}
\]
<table>
<thead>
<tr>
<th>Z</th>
<th>A</th>
<th>I_{gs}</th>
<th>N_{ex}</th>
<th>Z</th>
<th>A</th>
<th>I_{gs}</th>
<th>N_{ex}</th>
</tr>
</thead>
<tbody>
<tr>
<td>He 2</td>
<td>4</td>
<td>0</td>
<td>15</td>
<td>Fe 26</td>
<td>52,53,54</td>
<td>0, 3.5, 0</td>
<td>20, 21, 50</td>
</tr>
<tr>
<td>C 6</td>
<td>12</td>
<td>0</td>
<td>55</td>
<td></td>
<td>55,56,57</td>
<td>1.5, 0, 0.5</td>
<td>42, 111, 65</td>
</tr>
<tr>
<td>O 8</td>
<td>16</td>
<td>0</td>
<td>75</td>
<td></td>
<td>58,59,60</td>
<td>0, 1.5, 0</td>
<td>66, 40, 24</td>
</tr>
<tr>
<td>Ne 10</td>
<td>20</td>
<td>0</td>
<td>131</td>
<td></td>
<td>61,62</td>
<td>1.5, 0</td>
<td>4, 10</td>
</tr>
<tr>
<td>Mg 12</td>
<td>24</td>
<td>0</td>
<td>94</td>
<td>Co 27</td>
<td>55,56,57</td>
<td>3.5, 4, 3.5</td>
<td>72, 26, 94</td>
</tr>
<tr>
<td>Si 14</td>
<td>28</td>
<td>0</td>
<td>188</td>
<td></td>
<td>58,59,60</td>
<td>2, 3.5, 5</td>
<td>92, 73, 105</td>
</tr>
<tr>
<td>S 16</td>
<td>32</td>
<td>0</td>
<td>25</td>
<td></td>
<td>61,62,63</td>
<td>3.5, 2, 3.5</td>
<td>29, 15, 6</td>
</tr>
<tr>
<td>Ar 18</td>
<td>36</td>
<td>0</td>
<td>33</td>
<td></td>
<td>64,65</td>
<td>1, 3.5</td>
<td>8, 1</td>
</tr>
<tr>
<td>Ca 20</td>
<td>40,41,42</td>
<td>0, 3.5, 0</td>
<td>98, 28, 107</td>
<td>Ni 28</td>
<td>56,57,58</td>
<td>0, 1.5, 0</td>
<td>22, 2, 30</td>
</tr>
<tr>
<td></td>
<td>43,44,45</td>
<td>3.5, 0, 3.5</td>
<td>73, 71, 41</td>
<td></td>
<td>59,60,61</td>
<td>1.5, 0, 1.5</td>
<td>68, 82, 76</td>
</tr>
<tr>
<td></td>
<td>46,47,48</td>
<td>0, 3.5, 0</td>
<td>46, 15, 10</td>
<td></td>
<td>62,63,64</td>
<td>0, 0.5, 0</td>
<td>67, 12, 64</td>
</tr>
<tr>
<td>Sc 21</td>
<td>43,44,45</td>
<td>3.5, 2, 3.5</td>
<td>66, 56, 85</td>
<td>Cu 29</td>
<td>61,62,63</td>
<td>1.5, 0, 1.5</td>
<td>58, 65, 80</td>
</tr>
<tr>
<td></td>
<td>46,47,48</td>
<td>4, 3.5, 6</td>
<td>96, 41, 46</td>
<td></td>
<td>64,65,66</td>
<td>1, 1.5, 1</td>
<td>90, 19, 18</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>3.5</td>
<td>1</td>
<td></td>
<td>67,68,69</td>
<td>1.5, 1, 1.5</td>
<td>2, 3, 6</td>
</tr>
<tr>
<td>Ti 22</td>
<td>44,45,46</td>
<td>0, 3.5, 0</td>
<td>26, 24, 104</td>
<td>Zn 30</td>
<td>64,65,66</td>
<td>2.5, 0, 0</td>
<td>101, 15, 98</td>
</tr>
<tr>
<td></td>
<td>47,48,49</td>
<td>2.5, 0, 3.5</td>
<td>66, 218, 35</td>
<td></td>
<td>67,68,69</td>
<td>2.5, 0, 0.5</td>
<td>29, 50, 27</td>
</tr>
<tr>
<td></td>
<td>50,51</td>
<td>1, 0.5</td>
<td>39, 13</td>
<td>70</td>
<td>0</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>V 23</td>
<td>47,48,49</td>
<td>1.5, 4, 3.5</td>
<td>21, 52, 79</td>
<td>Ga 31</td>
<td>69,71</td>
<td>1.5, 1.5</td>
<td>17, 15</td>
</tr>
<tr>
<td></td>
<td>50,51,52</td>
<td>6, 3.5, 3</td>
<td>65, 109, 30</td>
<td>Ge 32</td>
<td>70,71,72</td>
<td>0, 0.5, 0</td>
<td>115, 58, 112</td>
</tr>
<tr>
<td></td>
<td>53</td>
<td>3.5</td>
<td>22</td>
<td></td>
<td>73,74,75</td>
<td>4.5, 0, 0.5</td>
<td>8, 137, 49</td>
</tr>
<tr>
<td>Cr 24</td>
<td>48,49,50</td>
<td>0, 2.5, 0</td>
<td>17, 11, 79</td>
<td>76*</td>
<td>0</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td></td>
<td>51,52,53</td>
<td>3.5,0,1.5</td>
<td>100, 86, 65</td>
<td>As 33</td>
<td>71,75</td>
<td>2.5, 1.5</td>
<td>24, 58</td>
</tr>
<tr>
<td></td>
<td>54,55,56</td>
<td>0,1.5,0</td>
<td>61, 31, 21</td>
<td>Se 34</td>
<td>74,76,78</td>
<td>0, 0, 0</td>
<td>56, 91, 95</td>
</tr>
<tr>
<td></td>
<td>57</td>
<td>1.5</td>
<td>1</td>
<td></td>
<td>80,82,83</td>
<td>0, 4.5</td>
<td>53, 18, 10</td>
</tr>
<tr>
<td>Mn 25</td>
<td>51,52,53</td>
<td>2.5, 6, 3.5</td>
<td>44, 41, 65</td>
<td></td>
<td>84,85,86</td>
<td>0, 2.5, 0</td>
<td>20, 1, 1</td>
</tr>
<tr>
<td></td>
<td>54,55,56</td>
<td>3, 2.5, 3</td>
<td>52, 90, 78</td>
<td></td>
<td>87,88,89</td>
<td>2.5, 0, 2.5</td>
<td>1, 1, 1</td>
</tr>
<tr>
<td></td>
<td>57,58,59</td>
<td>2.5, 1, 1.5</td>
<td>33, 17, 2</td>
<td>Br 35</td>
<td>79,81</td>
<td>1.5, 1.5</td>
<td>53, 42</td>
</tr>
<tr>
<td>Kr 36</td>
<td>78,80,82</td>
<td>0, 0, 0</td>
<td>53, 23, 28</td>
<td></td>
<td>83,84,86</td>
<td>4.5, 0, 0</td>
<td>24, 31, 7</td>
</tr>
</tbody>
</table>

* Stable nuclides are in bold. Formally, the isotopes 48Ca, 50V, 76Ge, and 82Se are unstable. Their half-decay lives are 5.1×10^{16} y, 1.5×10^{17} y, 1.09×10^{21} y, and 1.21×10^{20} y, respectively.
Partition Functions

For $T_9 < 40$:
1. Experimentally known states (up to ~ 100 per nucleus)
2. Fermi-gas level-density model as provided by Rauscher et al. (1997)

For $T_9 > 40$, we use a simple analytical formula:

$$\langle E_{ex} \rangle = Q_{A,Z} \vartheta(T), \quad 0 \leq \vartheta(T) \leq 1, \quad \vartheta(T) = a - \frac{b}{T} - \frac{c}{T^2}$$

$$\langle E_{ex} \rangle = T \frac{d \ln \omega}{d \ln T}$$

$$\ln \omega(T) = d - \frac{Q_{A,Z}}{T} \left(a - \frac{b}{2T} - \frac{c}{3T^2} \right)$$

For each (A, Z) b, c, d come from continuity of ω, ω' and ω'' at $T_9 = 40$
\[\gamma = \left(\frac{\partial \ln P}{\partial \ln \rho} \right)_{s, \theta} \]

\[\theta = \frac{30}{26} \]

\(\gamma_{\text{min}} = 0.94 \)

\(\gamma_{\text{min}} = 1.04 \)

----- no excitation
\[S_b = \left(\frac{m_u}{k} \right) S = \text{entropy per nucleon} \]
\[\frac{dE}{TdS} + PdV = TdS + \Psi dY_l \quad \left(V \equiv \frac{1}{\rho} \right) \]

\[Y_l = Y_e = \frac{1}{1+\theta} \quad \text{lepton charge per nucleon} \]

\[\Psi = -\frac{1}{m_u} \left(\mu_n - \mu_p - \mu_e \right) = -\frac{kT}{m_u} \left(\psi_n - \psi_p - \psi_e + \frac{Q_n}{kT} \right) \]

\[Q_n = c^2 \left(m_n - m_p - m_e \right) = 0.78235 \text{ MeV} \]

\[\psi_i = \frac{\mu_i - mc^2}{kT} \quad \text{For adiabatic process } (dE + PdV = 0) : \]

\[\frac{dS}{dY_l} = -\frac{\Psi}{T} \]

For \(\Psi > 0 \), \(dS > 0 \) when \(dY_l < 0 \) (\(d\theta > 0 \))
$\xi_{n,p} > 1$

$$\xi_{n,p} \equiv \frac{Y_{n,p}}{\sum Y_{A,Z}} = 1$$
\[S_b = \frac{(m_u/k)S}{S_e + S_\gamma + S_n + S_p + \sum S_{A,Z}} = 1 \]
$\lg \rho = \begin{cases} 7.7 & \text{for } 9.5 \leq T_g \leq 10.7 \\ 11.4 & \text{for } 11.8 \leq T_g \leq 12.15 \\ 12.4 & \text{for } 12.4 \leq T_g \leq 12.6 \\ 12.8 & \text{for } 12.8 \leq T_g \leq 12.95 \end{cases}$

(A, Z)

$S_b = 2.0 \quad \theta = 30/26$

δ^a

e, γ, n, p

T_g
\[\lg \rho = \]

\[S_b = 4.0 \quad \theta = 30/26 \]

\[(A, Z) \]

\[n \]

\[p \]

\[\gamma \]

\[e \]
Coulomb Interaction

Free Energy Formalism:

\[F(\rho, T, \{Y_i\}) = F^{id}(\rho, T, \{Y_i\}) + \Delta F(\rho, T, \{Y_i\}) \]

New set of equilibrium concentrations \(\{Y_i\}\) due to the free energy minimization procedure.

One component plasma (OCP)

\[\Delta F_{ii} = \frac{kT}{m_u} Y_{A,Z} f(\Gamma), \quad \Gamma = \left(\frac{Z e}{kT} \right) \left(\frac{4\pi}{3} n_{A,Z} \right)^{1/3} \]

Multicomponent plasma (MCP)

\[\Gamma_e = \frac{e^2}{kT} \left(\frac{4\pi}{3} n_e \right)^{1/3} \]

Average Ion Model

\[\Delta F_{ii} \propto (\sum_i Y_i) f(\langle \Gamma \rangle), \quad \langle \Gamma \rangle = \frac{\sum_i Y_i \Gamma_i}{\sum_i Y_i}, \quad \Gamma_i = Z_i^{5/3} \Gamma_e \]

Linear Mixing Rule

\[\Delta F_{ii} \propto \sum_i Y_i f(\Gamma_i) \]

Complicated Mixing

\[\Delta F_{ii} \propto \sum_{i,j} Y_i Y_j \varepsilon_{ij} f(\Gamma_{ij}) \]
Influence of Coulomb Interaction (CI) on γ
Tracks of collapsing stars

- EOS without PF
- EOS with PF
- EOS with PF and CI

$M_{\text{core}} = 1.4M_\odot$

$M_{\text{core}} = 2M_\odot$
Conclusions

1. Partition functions are not very crucial for EOS and can result in moderate changes in entropy and γ only for $\rho > 10^{10}$ g/ccm

2. For low entropies ($S_b \leq 2$), the neutron-rich nuclei can have a strong impact on EOS by contributing to entropy and by lowering Y_n and Y_p

3. Free nucleon degeneracy is a mild effect since at low T nearly all n and p are packed in heavy nuclei

4. For $3 < T_g < 100$, the Coulomb Interaction distinctly influences on EOS (specifically on γ) only at $\rho > 10^{11}$ g/ccm. Further study of this issue is under way.

Fowler W.A., Engelbrecht C.A., Woosley S.E.

Mazurek T.J., Lattimer J.M., Brown G.E.
ApJ. 1979, 229, p. 713

Rauscher T., Thielemann F.-K., Kratz K.-L.

Imshennik V.S., Nadyozhin D.K. AZh. 1965, 42, p. 1154
Imshennik V.S., Chechetkin V.M. AZh. 1970, 47, p. 929

Blinnikov S.I., Dunina-Barkovskaya N.V., Nadyozhin D.K.