The QCD Phase Diagram: What About Isospin?

Dominique Toublan

University of Illinois at Urbana-Champaign

QCD and Dense Matter, Seattle, May 2004
Introduction

- **Experiments:** baryon AND isospin density
 - Neutron stars (high μ_B, low T)
 - RHIC (low μ_B, high T)

- Most studies: $\mu_I = 0$, except low T
 - Neutron stars
 - LOFF phase
 - What about higher T?

- QCD phase diagram with $\mu_I, \mu_B, T \neq 0$

- Random Matrix model
Outline

• Quick overview of QCD phase diagram
 ▶ $\mu_I = 0, \mu_B \neq 0, T \neq 0$
 ▶ $\mu_B = 0, \mu_I \neq 0, T \neq 0$

• Random Matrix Theory
 ▶ Description of the model
 ▶ Range of validity at $\mu_I, \mu_B, T = 0$

• Random Matrix model with $\mu_I, \mu_B, T \neq 0$

• QCD phase diagram ($N_f = 2, m_q \neq 0$)

• How to test these results?
QCD: $\mu_I = 0$, $\mu_B \neq 0$, $T \neq 0$

- Color Superconductivity, Critical endpoint
 - Random Matrix, NJL, Ladder QCD
 - Lattice \rightarrow low μ_B only
QCD: $\mu_B = 0$, $\mu_I \neq 0$, $T \neq 0$

- Superfluidity, Tricritical point, Critical endpoint?
- Chiral Perturbation Theory, Lattice
- Phase diagram similar to $N_c = 2$, $\mu_B \neq 0$
Lattice: $N_c = 2, \mu_B \neq 0, T \neq 0$
Random Matrix Theory: $\mu_B, \mu_I, T = 0$

- QCD partition function

$$Z_{\text{QCD}} = \int [dA] \prod_f \det(iD + m_f) \, e^{-S_{\text{YM}}}$$

- Random Matrix Theory partition function

$$Z_{\text{RMT}} = \int [dW] \prod_f \det(iD + m_f) \, e^{-nG^2 \text{Tr}WW^\dagger}$$

$$\begin{vmatrix}
 m_1 & 0 & W & 0 \\
 0 & m_2 & 0 & W \\
 -W^\dagger & 0 & m_1 & 0 \\
 0 & -W^\dagger & 0 & m_2
\end{vmatrix}, \quad W = n \times n$$
Random Matrix Theory: $\mu_B, \mu_I, T = 0$

- Random Matrix Theory partition function
 - Same symmetry as QCD partition function
 - No dynamics

- Spectrum of Dirac operator

 Berbenni-Bitsch et al., PRL 80 (1998) 1146

 - Lattice, Chiral Perturbation Theory

 - Valid if $L \ll 1/m_\pi$
Random Matrix model: $\mu_B, \mu_I, T \neq 0$

- Partition function

$$
Z_{\text{RMT}} = \int [dW] \prod_f \det (iD + m_f + \mu_f \gamma_0) \; e^{-nG^2 \operatorname{Tr}WW^\dagger}
$$

$$
 \begin{pmatrix}
 m_1 & 0 & W + \Omega + \mu_1 & 0 \\
 0 & m_2 & 0 & W + \Omega + \mu_2 \\
 -W^\dagger - \Omega^\dagger + \mu_1 & 0 & m_1 & 0 \\
 0 & -W^\dagger - \Omega^\dagger + \mu_2 & 0 & m_2
 \end{pmatrix}
$$

$$
\Omega = \begin{pmatrix}
iT & 0 \\
0 & -iT
\end{pmatrix}
$$
Random Matrix model: $\mu_B, \mu_I, T \neq 0$

- Random Matrix model partition function

$$Z_{\text{RMT}} = \int [dW] \prod_f \det(iD + m_f + \mu_f \gamma_0) \ e^{-nG^2 \text{Tr}WW^\dagger}$$

1) Determinant as integral over fermions
2) Integration over W (Gaussian)
 \Rightarrow Four fermion term
3) Hubbard-Stratonovich transformation
 \Rightarrow Mesons
4) Integration over fermions
 \Rightarrow Effective action with mesons (exact map.)
Random Matrix model: $\mu_B, \mu_I, T \neq 0$

- Effective action identical to zero-momentum part of Chiral Perturbation Theory at $\mu_B, T = 0$

- Saddle point approximation of effective action
 ▶ Ansatz → order parameters

$$\begin{cases}
\sigma_1 = \langle \bar{u}u \rangle \\
\sigma_2 = \langle \bar{d}d \rangle \\
\rho = \frac{1}{2}(\langle \bar{u}\gamma_5 d \rangle - \langle \bar{d}\gamma_5 u \rangle)
\end{cases}$$

▶ Study like a Landau-Ginzburg model
Random Matrix: $\mu_B \neq 0, \mu_I = 0$

- NO CSC, but Critical endpoint
- Lattice, Nambu–Jona-Lasinio, Ladder QCD
Random Matrix: $\mu_B = 0, \mu_I \neq 0$

- Superfluidity, but **NO** Tricritical Point
- Lattice, Chiral Perturbation Theory
Random Matrix: $\mu_I, \mu_B \neq 0, T = 0$

- Hadronic phase, Superfluid phase
- High $\mu_f \Rightarrow \langle \bar{q}_f q_f \rangle \ll 1$
Random Matrix: \(\mu_I, \mu_B, T \neq 0 \)
Random Matrix: $\mu_I, \mu_B, T \neq 0$

- **Doubling:** phase transition lines, critical endpoints
- **Critical endpoint at lower μ_B for fixed $\mu_I < m_\pi$**

 \Rightarrow RHIC: 2 crossovers or first order phase trans.

\Rightarrow Study of critical endpoint easier
How to test these results?

- NJL model if flavor-mix. four-fermion interaction \(\lesssim 10 - 15\% \) of non-flav. mixing term
- Ladder QCD
- Lattice
 - 3-color QCD: methods used for low \(\mu_B \)
 - 2-color QCD: large \(m_\pi \), fixed \(\mu_I < m_\pi \)

 \(\rightarrow \) Random Matrix model for 2-color QCD
Random Matrix model for 2-color QCD
Conclusions and Outlook

- Influence of small μ_I on QCD phase diagram
 - Doubling: phase trans., critical endpoints
 - Critical endpoint at lower μ_B, same T

- Predictions can be tested on lattice
 - 3-color or 2-color QCD

- Consequences for RHIC:
 - Two crossovers or two first order phase transitions at low μ_B
 - Critical end point at lower $\mu_B \Rightarrow$ more important