Non Fermi liquid effects in dense matter

Kai Schwenzer, Thomas Schäfer
INT workshop “From lattices to stars”
Seattle, 27.5.2004
Introduction

Possible phases at high density ...

... all involve condensed excitations and are no Fermi liquids

Rajagopal, Wilzcek, hep-ph/0011333
Alford, Kouvaris, Rajagopal, hep-ph/0311286
Kryjevski, Kaplan, Schaefer, hep-ph/0404290
Motivation

☐ (Normal) quark matter phase at high density is basically ruled out

However:

☒ Important to check the stability of superfluid phases
☒ Many considered phases include un-gapped quark excitations (g)2SC, gCFL, ...
☒ Simpler environment to study gluonic effects than in superfluid phases
High density effective theory

- Effective degrees of freedom at high density: excitations around the Fermi surface

- "Integrate out" high energy excitations

 - No anti-particles

- N-point functions in the effective theory from matching procedure

- Counterterm to ensure gauge invariance

Effective Lagrangian

\[L_{\text{HDET}} = \sum \bar{\psi}_v \gamma^i (iv \cdot D) \psi_v - \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu} + \ldots \]

Involves an explicit cutoff \(\Lambda \)

- Fermi surface covered with patches of size \(\Lambda \)
- Involves only relative momenta and energies

Consistent power counting scheme

Large \(\mu \) plays similar role to large \(N_f \)
Unscreened gluons

Gluonic excitations in the medium

Static electric gluons are screened by Debye mass

\[V(r) \propto \frac{\exp(-m_D r)}{r} \quad m_D^2 = \frac{N_f g^2 \mu^2}{2\pi^2} = 2m^2 \]

Magnetic gluons are only dynamically screened

\[\Pi_t(k_0, k) = m^2 \frac{k_0}{k} \left(1 - \left(\frac{k_0}{k} \right)^2 \right) \frac{1}{2} \log \left(\frac{k_0 + k}{k_0 - k} \right) + \frac{k_0}{k} \]

Effective gluon propagator

\[D_{ij}(k_0, k) = \frac{\delta_{ij} - \hat{k}_i \hat{k}_j}{k_0^2 - \vec{k}^2 + i\eta |k_0|/|\vec{k}|} \]
1-loop self energy

- Inclusion of dynamically screened gluons

\[-i \Sigma(p) = - \int \frac{d^4 k}{(2\pi)^4} \Gamma^a_\mu S(p + k) \Gamma^b_\nu D^{ab}_{\mu\nu}(k)\]

- Approximate analytic result

\[\Sigma(\omega, l) = \gamma \omega \log \left(\frac{\Lambda}{\omega}\right)\]

\[\gamma = \frac{g^2 C_F}{12\pi^2}\]

- Strong infrared enhancement

- Independent of \(\vec{p}\) to leading order

\[\text{Breakdown of perturbation theory } \omega < \Lambda \exp \left(-\frac{9\pi^2}{g^2}\right) ?\]
Scales in dense matter

\[\omega_{bcs} = \mu \exp\left(-\frac{3\pi^2}{\sqrt{2}g}\right) \]

\[\omega_{nfl} = \mu \exp\left(-\frac{9\pi^2}{g^2}\right) \]

• **HDET cutoff** \(\Lambda \) chosen at the damping scale \(m \)

• **Pairing instability**

• **Non Fermi liquid effects** at very low scales

Fermi sea

\(\omega_{nfl} \)

\(\Lambda \approx m \)

\(\mu \)

screening & damping
Dyson-Schwinger equation

Selfconsistent analysis of the self energy

\[-i \Sigma(p_0) = g^2 C_F \int \frac{d^4k}{(2\pi)^4} \frac{1-(\vec{v} \cdot \hat{k})^2}{p_0+k_0-l_{p+k}+\Sigma(p_0+k_0)} \frac{1}{k_0^2-k^2+i\eta|k_0|/|k|}\]

\[k_l \ll k_t \rightarrow \text{integrations decouple}\]

Gluon propagator dominated for \[k \approx (\eta k_4)^{\frac{1}{3}}\]

Pick up the fermion pole in the \[l_k\] integration

Self energy is approximately 1-loop exact
RG analysis

Previous result in: Boyanovsky, de Vega, Phys. Rev. D 63 (2001)

\[S^{-1}(\omega, l) = \omega \left(\frac{\omega}{\Lambda} \right)^\gamma - l \]

In contradiction with DS-result

Broken Lorentz invariance due to Fermi see

\[\mathcal{L} = \psi_v^\dagger (\omega - v_F l) \psi_v + g v_F \psi_v^\dagger \hat{\nabla} \psi_v + \ldots \]

Self energy and coupling

\[\Sigma(\omega, l) = \frac{g^2 v_F}{9\pi^2} \omega \log\left(\frac{\Lambda}{\omega} \right) \]

\[\alpha = \frac{g^2 v_F}{4\pi} \]

Bare fields and couplings

\[\psi_{0,v} = Z^{1/2} \psi_v \]

\[g_0 = \frac{Z_F}{Z^2} g \]

\[v_{0,F} = Z_F v_F \]

\[G_0^{(n)}(\omega_i, v_{0,F} l_i, \alpha_0) = Z^{n/2} G^{(n)}(\omega_i, v_F l_i, \alpha) \]
RG solution

Callan Symanzik equation

\[
\left\{ \Lambda \frac{\partial}{\partial \Lambda} + \beta(\alpha) \frac{\partial}{\partial \alpha} - \gamma_F(\alpha) l_i \frac{\partial}{\partial l_i} + \frac{n}{2} \gamma(\alpha) \right\} G^{(n)}(\omega_i, l_i, \alpha) = 0
\]

One loop results

\[
\beta(\alpha) = -\gamma_F(\alpha) \alpha \quad \gamma(\alpha) = -\gamma_F(\alpha) = \frac{4\alpha}{9\pi}
\]

RG equation for the two point function

\[
\left\{ \Lambda \frac{\partial}{\partial \Lambda} + \gamma \left[\alpha \frac{\partial}{\partial \alpha} + l \frac{\partial}{\partial l} + 1 \right] \right\} S(w, l, \alpha) = 0
\]

\[\checkmark \text{ same result: } S^{-1}(\omega, l) = \omega \left(1 + \gamma \log \left(\frac{\Lambda}{\omega} \right) \right) - v_F l\]

Neglecting the running of the coupling \(\beta(\alpha) = 0 \)
yields scaling with an anomalous dimension

Higher order logarithmic terms are absent

\[
S^{-1}(\omega, l) = \sum_k a_k \alpha^k \omega \left[\log \left(\frac{\Lambda}{\omega} \right) \right]^k - v_F l \quad a_k = 0, \ k > 1
\]
Fermionic self energy

solid: full numeric
dashed: leading log
dotted: anom. dim.
Asymptotic behavior

Ratio between resummed and one loop result

Strong coupling @ $\mu \rightarrow$ nonperturbative for small μ
Fermionic excitations

- Quark propagator is not given by a simple pole but contains a cut.

- Spectral density has not fully Breit-Wigner form:
 \[\rho(\omega) = \frac{\gamma \omega}{[\omega(1 + \gamma \log(\Lambda/\omega)) - l]^2 + \pi^2 \gamma^2 \omega^2} \]

- Vanishing wavefunction renormalization and Fermi velocity at the Fermi surface.

- “Jump” at the Fermi surface vanishes.

- Strongly IR-modified dispersion relation.
Conclusion and Outlook

- Dense matter is not a Fermi liquid even in the normal phase
- Effects result from kinematics at the Fermi surface
 \[C_v = N_f (N_c^2 - 1) \frac{g^2 \mu^2}{72 \pi^2} T \log \left(\frac{\Lambda}{T} \right) \]
- Modified neutrino emissivity
- Higher order n-point functions nonperturbative?
- Impact on thermal conductivity, ...?