Aspects of the
QCD Phase Diagram from the Lattice

From Lattices to Stars
INT Seattle - April 29 2004

Prologue:

QCD at nonzero baryon density is a twenty years old, and difficult problem... ..In the last four years a few lattice techniques proven successful for \(\mu_B/T < 1 \)... This talk is about one such techique, and the results Massimo D’Elia and I obtained in the four flavor model...

Massimo D’Elia and Maria-Paola Lombardo
hep-lat/0309114/0209146/0205022 + new results
Importance Sampling and The Positivity Issue

\[\mathcal{Z}(T, \mu, U) = \int dU e^{-(S_{YM}(U) - \log(\det M))} \]

\[\det M > 0 \rightarrow \text{Importance Sampling} \]

\[M^\dagger(\mu_B) = -M(-\mu_B) \]

\[\mu = 0 \rightarrow \det M \text{ is real} \]

Particles-antiparticles \underline{symmetry}

Imaginary \(\mu \neq 0 \rightarrow \det M \text{ is real} \)

(Real) Particles-antiparticles \underline{symmetry}

Real \(\mu \neq 0 \) Particles-antiparticles \underline{asymmetry} \rightarrow \det M \text{ is complex in QCD}

QCD with a real baryon chemical potential:
use information from the accessible region

\[\text{Real} \mu = 0, \text{Im} \mu \leq 0 \]
QCD and a Complex μ_B

Analytic continuation along one arc in the complex μ plane:

Complex μ Plane

\[Z(\mu) = Z(-\mu) \]

Can be mapped onto the complex μ^2 plane

Complex μ^2 Plane

To define $Z(\mu^2)$ which is real valued for real μ^2

Analog with statistical models in external fields
Region accessible to simulations: μ^2 real ≤ 0.

Multiparameter Reweighting:
Fodor, Katz, Csikor, Egri, Szabo, Toth

Derivatives: Gupta, Gavai; MILC; QCD-Taro

Expanded Reweighting: Bielefeld-Swansea

Im μ: de Forcrand, Philipsen; D’Elia, MpL
The Roberge and Weiss analysis

\[Z(\nu) = \text{Tr} e^{-\beta H + i\beta \nu N} = e^{-\beta H + i\theta N} \]

1. \(Z(\theta) \) has a periodicity \(2\pi \) anyway.

2. If only color singlet are allowed, then \(N = 0 \mod (N_c) \) and periodicity becomes \(2\pi/N_c \)

However (Roberge Weiss (1986))

\(Z(\theta) \) has always period \(2\pi/N_c \)

The imaginary chemical potential changes the preferred vacuum for the Polyakov loop from \(\phi_P = 0 \) to one of its \(Z_3 \) images

The strong coupling analysis shows that periodicity is smooth at low temperature, and p.t. theory suggests that it is sharp at high \(T \)
Analytic continuation from an imaginary μ

QCD Results for

The critical line
2,3,2+1 flavor : Ph. de Forcrand O. Philipsen
4 Flavor: M. D'Elia, MpL *

Order parameter, Pressure, Baryon Density
4 Flavor: M. d'Elia, MpL *

QCD related models
Strong Coupling MpL
Dimensionally reduced model Hart, Laine, Philipsen
Two colors P. Giudice, A. Papa

* This Talk

Outline

I-QCD in the T, μ^2 plane

II-The critical line

III-The hadronic phase

IV-The QGP phase
\[S_{QCD} = S_{YM} + S_F \rightarrow g \rightarrow \infty = S_F \]

\[Z = \left(\int V_{eff}(\langle \bar{\psi}\psi \rangle d \langle \bar{\psi}\psi \rangle) \right) V^s \]

\[V_{eff}(\langle \bar{\psi}\psi \rangle, \mu) = 2\cosh(rN_tN_C\mu) + \sinh[(N_t + 1)N_C < \bar{\psi}\psi>] / \sinh(N_t < \bar{\psi}\psi>) \]

\[V_{eff}(\langle \bar{\psi}\psi \rangle, i\mu) = 2\cos(rN_tN_C\mu) + \sinh[(N_t + 1)N_C < \bar{\psi}\psi>] / \sinh(N_t < \bar{\psi}\psi>) \]

\[\langle \bar{\psi}\psi \rangle \text{ as a function of real and imm } \mu, \text{ for } T \simeq 0 \text{ and } T \simeq T_C \]
μ Imm.: Two Color QCD

P. Giudice and A. Papa, 2004

Lattice: 8x8x8x4
β = 2.0
m = 0.07

From Lattices to Stars

Seattle INT April 2004
Analytic continuation of the critical line from an imaginary μ:
Ph. de Forcrand and O. Philpseen

Consideration of the T, μ^2 plane helps the analysis:

Model analysis suggests this parametrization confirmed by numerical results:

$$(T + aT_c)(T - T_c) + k\mu^2 = 0, \ k > 0$$

Gross Neveu Model

The critical line:

$$1 - \mu/\Sigma_0 = 2T/\Sigma_0 ln(1 + e^{-\mu/T})$$

Reduces to:

$$T(T - T_c) + \mu^2/(8ln2) = 0$$

Second order approximation good up to $\mu \simeq T_c$
From O. Philipsen and E. Laermann

\[T/\text{MeV} \]
\[\mu_B/\text{MeV} \]

- \(N_f=2, [3] \)
- \(N_f=2+1, [1] \)
- \(N_f=2, [2] \)
- \(N_f=4, [4] \)

<table>
<thead>
<tr>
<th>Method</th>
<th>(N_f)</th>
<th>(m_q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>reweighting [1]</td>
<td>2+1</td>
<td>(am = 0.025, m_s = 8m_u, (m_\pi \approx 300 \text{MeV}))</td>
</tr>
<tr>
<td>rew. +Taylor [2]</td>
<td>2</td>
<td>(am = 0.1, (m_\pi \approx 600) \text{ MeV})</td>
</tr>
<tr>
<td>imag. (\mu) [3]</td>
<td>2</td>
<td>(am = 0.025, (m_\pi \approx 300) \text{ MeV})</td>
</tr>
<tr>
<td>imag. (\mu) [4]</td>
<td>4</td>
<td>(am = 0.05)</td>
</tr>
</tbody>
</table>

Scale invariant plot for the QCD critical line

Note studies of N_f corrections in Gross-Neveu [D. Ebert et al. 2002]:

$$V_{eff} (\sigma, T, \mu) = V_0 - 2N_f(N_c - 2)V_1(T, \mu)$$
\[n(T, i\mu) = \frac{\partial \log(Z(T, i\mu))}{V \partial \mu} \]

\[\chi_q(\mu = 0) = \left. \frac{i \partial n(i\mu)}{\partial \mu} \right|_{\mu=0} \]
Pressure: integral method

\[
\frac{P(T, i\mu) - P(T, \mu=0)}{T^4} = N_t^4 \int d\mu n(i\mu)
\]
Hadronic Phase: $T < T_c$

Observables are smooth, analytic continuation in the $\mu^2 > 0$ half plane possible, but interesting only when $\chi_q(\mu = 0, T) > 0$

Analytic continuation is valid till $\mu < \mu_c(T)$

Even and odd observables

For observables which are even/odd in the chemical potential O_e/O_o we consider two different parametrizations

- A Fourier serie

$$O_e = a_{e_F} + \sum b_{e_F} \cos(N_C N t \mu)$$

$$O_o = a_{o_F} + \sum b_{o_F} \sin(N_C N t \mu)$$

- A Taylor serie - useful to compare with $\mu = 0$ results:
 MILC; Bielefeld-Swansea; R. Gavai and S. Gupta.

$$O_e = a_{e_T} + b_{e_T} \mu^2 + c_{e_T} \mu^4$$

$$O_o = a_{o_T} + b_{o_T} \mu + c_{o_T} \mu^3$$

Even/odd observables purely real/imaginary at imaginary chemical potential
Number density

\[n(i\mu) = a_1 \sin(i\mu N_c N_T) + b_1 \sin(i2\mu N_c N_T) \nu_1 \]

Analytic continuation up to \(\mu = \mu_c(T) \):

\[a_1 \sin(i\mu N_c N_T) + a_2 \sin(i2\mu N_c N_T) \]

\[\rightarrow a_1 \sinh(\mu N_c N_T) + a_2 \sinh(i2\mu N_c N_T) \]

Critical density at \(T = .985 \ T_c \ n_c(\mu_c)/T^3 \approx 0.5 \)

The errors from one and two Fourier coefficient fits are shown.
Mass dependence

From derivatives: \(\partial < \bar{\psi} \psi > / \partial \mu = \partial n(\mu) / \partial m \)

When: \(\bar{\psi} \psi(\mu, m_q) = a_C \cosh(3\mu N_T) + b_C \) and
\(n(\mu, m_q) = a_n \sinh(3\mu N_T) \)

\[
\frac{n(\mu, m_q+\Delta m_q) - n(\mu, m_q)}{n(\mu, m_q)} = 3 \times N_T a_C / a_n \Delta m
\]

\[
\frac{\Delta n(\mu, m_q)}{n(\mu, m_q)} \approx 2.53 \Delta m_q / T
\]

\[
\frac{\Delta n(\mu, m_q)}{n(\mu, m_q)} \approx 4.03 \Delta m_q / T
\]
The chiral condensate $\langle \bar{\psi} \psi \rangle$ (μ_c) ≠ 0 : first order transition for four flavor QCD, possibly weakening a bit with temperature.
The metastable branch

The analytic continuation is insensitive to a discontinuous phase transition since it lives on the metastable branch; it follows the secondary minimum and determines the spinodal point.

\[\langle \bar{\psi} \psi \rangle = A(\mu - \mu^*)^\beta \]

The discontinuity can be related to \(\mu - \mu^* \).

Both shrinks to zero at the endpoint of a first order transition
Hadron Resonance Gas Model

In general, when one Fourier component suffices

\[\frac{\partial \langle \bar{\psi} \psi \rangle(\mu, m, T)}{\partial \mu} = \frac{\partial (n(\mu, m, T))}{\partial m} = -kn(\mu, m, T) \]

\[n(\mu, m, T) \propto Ae^{-m/T}\sinh(3\mu/T) \]

The results can be contrasted with an Hadron Resonance Gas model

\[\ln Z(T, \mu) = \sum_{\text{mesons}} \ln Z^M(T, \mu) + \sum_{\text{baryons}} \ln Z^B(T, \mu) \]

\[(m_N - \mu_B) > T \rightarrow \ln Z(T, \mu) \simeq \frac{p_B}{T^4} \simeq F(T, m) \cosh(3\mu/T) \]

F. Karsch, K. Redlich and A. Tawfik (2003): Hadron Resonance gas model from expanded reweighting

From Lattices to Stars
Seattle INT April 2004
Monitoring the approach to the SB (Lattice) behaviour:

analytic continuation from real to imaginary μ_B of the SB lattice result

Mass dependence from the derivative of the chiral condensate
Corrections to Free Field

A. Vuorinen 2004:

\[\Delta P(\mu) = A T^2 \mu^2 + B \mu^4 + \ldots \]

Alternatively (Rafelski, Letessier 2003, Quasiparticle models)

\[\Delta P = f(\mu)(A T^2 \mu + B \mu^3) \]

Trivial possibility: \(f(\mu) \) : constant effective number of flavors

\[\Delta P = N_{\text{eff}}^f (A T^2 \mu + B \mu^3) \]

Effective number of active flavors as estimated from the ratio of the lattice results to the lattice free field: appear to be constant for \(T \geq 1.5 T_C \)
$T_c < T \lesssim 1.1T_c$

Interplay of thermodynamics and critical behaviour in the RW regime $T_C < T < T_E$

$log P(\mu, T) \propto (\mu - \mu_c)^\eta$

Incompatible with a free field for continuous transitions, and for first order transitions of finite strength
Correlation between $< \bar{\psi} \psi >$ and Polyakov loop at $\mu_I = 0.15$, demonstrating the chiral and deconfining nature of the transition at nonzero real baryon density.

$\beta_c(i\mu) - \beta_d(i\mu) = 0 \rightarrow \beta_c(\mu) - \beta_d(\mu) = 0$
Summary

Strength of the method: not limited by volume; gives access to critical values of observables.

Results for Four flavor QCD thermodynamics for $0.985T_C < T < 3.5T_C$

1. The critical line is of first order or a very sharp crossover:

$$\frac{T}{T_C^2} = 1 - 0.0021(2)(\mu/T)^2,$$

where $\mu < 500 \text{ MeV}$.

2. Chiral and “deconfining” transition remain correlated at nonzero baryon density: $T_C^{\text{chiral}}(\mu) = T_C^{\text{screening}}(\mu)$

3. In the Hadronic Phase $\Delta P \propto \cosh(\mu_B/T)$

4. $n(\mu_C, T = 0.985T_C, m_q = 0.05)/T^3 \simeq 0.5$, and the mass corrections $\Delta n = -4.03\Delta m_q/T$.

5. For $T \geq 1.5$ the results are compatible with lattice Stefan Boltzmann with an active fixed number of flavor 0.92 for $T = 3.5T_C$ and 0.89 for $T = 2.5T_C$.

6. For $T \approx 1.1T_C$ there is room for non trivial deviations for free field, possibly connected with the chiral transition at $\mu^2 < 0$

Future possibilities for Im μ calculations

Hybrid Methods: combining the Im μ approach with derivatives/rewinding

Assessing the critical behaviour (tricritical point, endpoint) by monitoring the discontinuities at the critical point