Infrared QCD and the renormalisation group

Daniel F. Litim

INT, Seattle, May 2004

• motivation
 QCD phase diagram

• renormalisation group
 momentum cutoff
 flow equation

• applications to QCD
 infrared analysis in Landau gauge
 signatures of confinement

in collaboration with
S. Nedelko (Dubna), J.M. Pawlowski (Erlangen), L. von Smekal (Erlangen)
Phase diagram of QCD

- high temperature QCD
- high density QCD
- QCD at strong coupling
QCD at strong coupling

- **relevant for:**
 - confinement
 - chiral symmetry breaking
 - confinement-deconfinement phase transition
 - matter at realistic densities
 - hot QCD dynamics of soft excitations

- **lattice simulations**
 - ideal for
 - time independent observables
 - finite temperature
 - problematic for
 - dynamics, non-equilibrium
 - high baryonic density

- **renormalisation group methods**
 - analytic approach
 - complementary to lattice
 - Exact Renormalisation Group: very flexible
Exact Renormalisation Group

• **goal:** calculation of quantum effective action $\Gamma[\phi]$

• successive integrating-out of momentum modes via

 $S[\phi] \rightarrow S[\phi] + \Delta S_k[\phi]$, with

 $$\Delta S_k[\phi] = \int_q \phi(q) R(q) \phi(-q)$$

 leads to scale-dependent effective action Γ_k with
 momentum modes $q^2 > k^2$ integrated out.

• infinitesimal integration \Rightarrow flow equation:

 $$\partial_t \Gamma_k = \frac{1}{2} \text{Tr} \left(\frac{\delta^2 \Gamma_k[\phi]}{\delta \phi \delta \phi} + R \right)^{-1} \partial_t R$$

 initial condition: classical action $\Gamma_{k \to \Lambda} = S$

 endpoint: quantum effective action $\Gamma_{k \to 0} \equiv \Gamma$

 flow is infrared finite and ultraviolet finite
\[\partial_t \Gamma_k = \frac{1}{2} \text{Tr} \left(\frac{\delta^2 \Gamma_k[\phi]}{\delta \phi \delta \phi} + R \right)^{-1} \partial_t R = \frac{1}{2} \]

- **Infrared cutoff** \(R \)

 \[\begin{align*}
 R(q^2 \to 0) &\approx k^2 \\
 R(k \to 0) &\to 0 \\
 R(q^2 \to \infty) &\to 0
 \end{align*} \]

- **Locality**

 Momentum integration peaked about

 \[q^2 \approx k^2 \]
Example: scalar fields at criticality

- real scalar field theory: Ising universality class
- scaling behaviour
 flow equation for effective potential u in $3d$:

\[
\partial_t u + 3u - \rho u' = \int_0^\infty dy \frac{-y^{5/2} r'(y)}{y(1 + r) + u' + 2\rho u''}
\]

scaling variables $y = \frac{q^2}{k^2}$, $\rho = \frac{\phi^2}{2k}$, $u(\rho) = \frac{U(\phi)}{k^3}$, $r = \frac{R}{q^2}$

- critical exponent ν
 deduced from Wilson-Fisher fixed point $\partial_t u' = 0$

- optimisation for ν
- global extrema exist

$\nu_{opt} = \min_R \nu(R)$.

- optimisation entails PMS
- physical value (N=1)

$\nu_{phys} \approx 0.63$.
Gauge symmetry

• gauge symmetry \Rightarrow link between Greens functions

Ward identity:

$$D_\mu \frac{\delta \Gamma}{\delta A_\mu} = \text{quantum corrections}$$

• flow equation:

momentum cutoff quadratic in the fields $\sim \int A R_k A$ is, a priori, incompatible with non-linear gauge symmetry.

modified Ward identity:

$$D_\mu \frac{\delta \Gamma}{\delta A_\mu} = \text{quantum corrections} + \text{cutoff terms}$$

cutoff terms $\sim \langle D_\mu \frac{\delta}{\delta A_\mu} \Delta S_k \rangle \neq 0$

• gauge invariance of physical Greens functions:

required in the infrared limit at $k = 0$.

not mandatory at $k \neq 0$.
Confinement in Landau gauge QCD

• Kugo-Ojima confinement criterion
 gluonic mass gap and absence of Higgs mechanism ⇔ momentum behaviour of two-point functions:
 \[\Gamma^{(2)}_A(p) = p^{2(1-2\kappa_C)}, \quad \Gamma^{(2)}_C(p) = p^{2(1+\kappa_C)} \]
 confinement: \(\kappa_C \geq 0 \)

• Schwinger-Dyson equation
 infrared coefficients \(\kappa_C \geq 0, \alpha_s \)
 inclusion of quarks
 problems: RG scaling and renormalisation

• Stochastic quantisation
 infrared coefficients \(\kappa_C \geq 0, \alpha_s \)
 resolution of Gribov problem
 problems: RG scaling and renormalisation

• Lattice
 infrared behaviour of gluon propagator
 problem: finite size scaling

• Flow equations
 heavy quark potential
 effective quark interactions
 problems: access to infrared regime
Flows in Landau gauge QCD

• infrared analysis

consider Greens functions for the regime

\[k^2 \ll p^2 \ll \Lambda_{\text{QCD}}^2 \]

– deep infrared region
– physics already integrated-in
– trivial cutoff dependence

• fixed point behaviour

Greens functions in the deep infrared regime

\[\Gamma_{k}^{(n)}(p_i \ll \Lambda_{\text{QCD}}) = z_n \cdot \hat{\Gamma}^{(n)}(p_i, p_i^2/k^2) \]

– \(z_n \) is \(k \)-independent up to RG scalings
– \(k \)-dependence of \(\hat{\Gamma}^{(n)} \) only via the ratio \(p^2/k^2 \)
Technical details

- truncation

General ghost and gluon two-point functions vertices $\Gamma^{(3)}$, $\Gamma^{(4)}$ from Slavnov-Taylor identities

Parametrisation \(x = p^2/k^2 \)

\[
\begin{align*}
\Gamma^{(2)}_{k,A}(p) &= z_A \cdot x^{\kappa_A} (1 + \delta Z_A(x)) \cdot p^2 \cdot \Pi(p) \\
\Gamma^{(2)}_{k,C}(p) &= z_C \cdot x^{\kappa_C} (1 + \delta Z_C(x)) \cdot p^2 \\
\Gamma^{(n)}_{k}(p) &= z_n \cdot S^{(n)}_{\text{cl}}
\end{align*}
\]

- RG scaling implies

\[
\kappa_A = -2\kappa_C, \quad \alpha_s = \frac{g^2}{4\pi} \frac{1}{z_A z_C^2}
\]

- integrated flow

Analyse \(\Gamma^{(2)}_k(p) - \Gamma^{(2)}_0(p) = \int_0^k \frac{dk'}{k'} \partial_{t'} \Gamma^{(2)}_{k'} \)

Trade scale- for momentum integration \(\frac{dk'}{k'} = -\frac{dx'}{2x'} \)

⇒ deduce infrared parameters
Infrared analysis of QCD

• fixed point equation
 evaluate the integrated flow in the deep infrared regime:

 \[\delta Z(x) = \frac{\alpha_s}{\pi^2 N} \int_x^\infty \frac{dx'}{x'^{2+\kappa}} f(x'; x, \kappa, \delta Z) \]

 \[\delta Z(x \to \infty) \to 0 \] physical regime
 \[\delta Z(x \to 0) \to -1 + \ldots \] cutoff regime
 \[\Rightarrow \text{deduce } \kappa, \alpha_s \text{ and } \delta Z \text{ from the limit } x \to 0. \]

• infrared coefficients
 zeroth order: \(\kappa_C = 0.59535 \quad \alpha_s = 2.9717 \)
 unique, identical to Dyson-Schwinger result

 \[\kappa_{opt} = \text{extr}_R \kappa(R) \]
 maximum located at the non-iterated result
Infrared analysis (cont’d)

- solution for δZ
 - zeroth order: solution is R independent
 - full iteration: optimal propagators near non-iterated solution

\[
r(x) = \frac{\gamma}{x(1 + x)}
\]
Conclusions and outlook

- **infrared regime of QCD**
 - fixed point behaviour
 - analytical access
 - infrared coefficients κ_C and α_s
 - support for Kugo-Ojima scenario
 - full vertex functions, fermions

- **finite temperature**
 - deconfinement phase transition
 - thermal pressure

- **finite density**
 - inclusion of quarks, chemical potential