How Can We Extract Spectral Functions from Lattice Data?

Masayuki Asakawa
Kyoto University (MELQCD Collab.)
PLAN

- Spectral Function
- Necessity of MEM (*Maximum Entropy Method*)
 - Outline (Review)
- Zero and Finite Temperature Result
Spectral Function

- **Definition of Spectral Function**

\[
A_{\eta\eta}(k_0, \vec{k}) = \frac{1}{(2\pi)^3} \sum_{n,m} \frac{e^{-E_n/T}}{Z} \langle n | J_{\eta}(0) | m \rangle \langle m | J_{\eta'}(0) | n \rangle (1 \mp e^{-p_{mn}^0/T}) \delta^4(k^\mu - P_m^\mu) \\
- (+): Boson (Fermion)
\]

- \(J_{\eta}(0) \): A Heisenberg Operator with some quantum #
- \(|n\rangle \): Eigenstate with 4-momentum \(P_n^\mu \)
- \(P_{mn}^\mu = P_m^\mu - P_n^\mu \)

Pretty important function to understand QCD

Dilepton production rate, etc.

\[
\frac{dN (e^+e^- \text{ production at } T)}{d^4x d^4q} = - \frac{\alpha^2}{3\pi^2 k^2} \frac{\Delta_{\alpha}^\mu (k_0, \vec{k})}{e^{k_0/T} - 1}
\]

holds regardless of states, either in Hadron phase or QGP

M. Asakawa Kyoto University
Hadron Modification in HI Collisions?

Experimental Data

Comparison with Theory

M. Asakawa京都大学
Why Theoretically Unsettled

Mass Shift (Partial Chiral Symmetry Restoration)

Spectrum Broadening (Collisional Broadening)

Observed Dileptons

Sum of All Contributions (Hot and Cooler Phases)
Difficulty on Lattice

What’s measured on Lattice is Correlation Function $D(\tau)$

\[
D(\tau) = \int \left\langle O(\tau, \vec{x}) O(0, \vec{0}) \right\rangle d^3x
\]

$D(\tau)$ and $A(\omega) \equiv A(\omega, \bar{0})$ are related by

\[
D(\tau) = \int_0^\infty K(\tau, \omega) A(\omega) d\omega
\]

However,

- Measured in Imaginary Time
- Measured at a **Finite Number** of discrete points
- Noisy Data \(\rightarrow\) Monte Carlo Method

M. Asakawa Kyoto University
Thus, Inversion Problem

\[D^A(\tau) = \int_0^\infty K(\tau, \omega)A(\omega) d\omega \]

\[D^A(\tau) \Rightarrow A(\omega) \]

Typical ill-posed problem
Problem since Lattice QCD was born
Way out?

\(\chi^2 \)-fitting

- need to assume the form of \(A(\omega) \)
 (1-pole, 2-poles, 1-pole + continuum…etc.)
- many degrees of freedom \(\rightarrow \) many solutions
- resonance mass depends on \(T_{\text{min}} \)
Way out? (cont’d)

Example of χ^2-fitting failure

QCDPAX, 1995

$\beta = 6.0$

$24^3 \times 54$ lattice
MEM

Maximum Entropy Method

successful in crystallography, astrophysics, …etc.

M. Asakawa Kyoto University
Principle of MEM

- **MEM**
 a method to infer the most statistically probable image \(A(\omega) \) given data

 In MEM, Statistical Error can be given to the Obtained Image

- **Theoretical Basis:** Bayes’ Theorem

 \[
 P[X \mid Y] = \frac{P[Y \mid X]P[X]}{P[Y]}
 \]

 \(P[X \mid Y] \): Probability of \(X \) given \(Y \)

 A Theorem that reverses the roles of Cause and Result
Application of MEM to Lattice QCD

In Lattice QCD

D: Lattice Data (Average, Variance, Correlation...etc.)

H: All definitions and prior knowledge such as \(A(\omega) \geq 0 \)

Bayes Theorem

\[P[A | DH] \propto P[D | AH] P[A | H] \]

Most Probable Spectral Function \(A(\omega) \)

\(A(\omega) \) that Maximizes Posterior Prob. \(P[A | DH] \)

In MEM, basically this Most Probable Spectral Function is calculated
Ingredients of MEM

- \(P[D | AH] = \chi^2\)-likelihood function
 \[P[D | AH] = \exp(-L)/Z_L \]

- \(P[A | H] \) given by Shannon-Jaynes Entropy
 \[P[A | H \alpha m] = \frac{\exp(\alpha S)}{Z_s} \]
 \[S = \int \left[A(\omega) - m(\omega) - A(\omega) \log \left(\frac{A(\omega)}{m(\omega)} \right) \right] d\omega \]
 \[Z_s = \int e^{\alpha S} dA, \quad \alpha \in \mathbb{R} \]
 max at \(A(\omega) = m(\omega) \)

Default Model \(m(\omega) \in \mathbb{R} \): Prior knowledge about \(A(\omega) \)

such as semi-positivity, perturbative asymptotic value, ...etc.

M. Asakawa Kyoto University
What to Maximize in MEM

Therefore, we obtain

\[P[A|DH] \propto P[D|AH]P[A|H_\alpha m] \propto \exp(\alpha S - L) \]

The Maximum of \(\alpha S - L \)

Unique if it exists!

Mock Data Analysis

1. Take a test input image \(A_{\text{in}}(\omega) \equiv \omega^2 \rho_{\text{in}}(\omega) \)

2. Transform \(A_{\text{in}}(\omega) \) with an appropriate Kernel \(K(\tau, \omega) \)

\[
D_{\text{in}}(\tau) = \int K(\tau, \omega) A_{\text{in}}(\omega) d\omega, \quad K(\tau, \omega) = e^{-\omega \tau} \quad \text{Dirichlet Kernel}
\]

3. Make a mock data \(D_{\text{mock}}(\tau_i) \) by adding noise to \(D_{\text{in}}(\tau_i) \)

\[
\sigma / D_{\text{in}}(\tau_i) = b \times \tau_i / a, \quad a = \text{Lattice spacing, } b = \text{const.} \\
C_{ij} = \text{diagonal (for simplicity)}
\]

4. Apply MEM to \(D_{\text{mock}}(\tau_i) \) and construct the output image

\(A_{\text{out}}(\omega) \equiv \omega^2 \rho_{\text{out}}(\omega) \)

5. Compare \(\rho_{\text{out}}(\omega) \) with \(\rho_{\text{in}}(\omega) \)
Result of Mock Data Analysis (1)

N(# of data points)-b(noise level) dependence

M. Asakawa Kyoto University
Result of Mock Data Analysis (2)

N(# of data points)-b(noise level) dependence
Error Analysis in MEM

MEM is based on Bayesian Probability Theory

In MEM, *Errors can be and must be assigned*

This procedure is *essential* in MEM Analysis

Error Bars can be put to

Average of Spectral Function in $[\omega_1, \omega_2]$,\[\frac{1}{\omega_2 - \omega_1} \int_{\omega_1}^{\omega_2} \rho(\omega) d\omega \]

Decay Constants, e.g.,\[f^2 = 4 \left(\frac{\kappa Z}{m_{\rho}} \right)^2 \int_{\text{pole}} \omega \rho_\nu(\omega) d\omega \quad \cdots \text{etc.} \]
SPF in V Channel \((T=0)\)

![Spectral Function in the Vector Channel](image)

- **Ground State**: \(\rho\)
- **Excited State**
- **Continuum State**

- **Parameters**:
 - \(\beta = 6.0\)
 - 160 configurations
 - Wilson fermion
 - Quenched Approx.
 - \(\kappa_c = 0.1571\)
 - \(20^3 \times 24\)

M. Asakawa Kyoto University
SPF in PS Channel \((T=0)\)
$T=0$ Result in V Channel and Error Analysis

- Perturbative Continuum Value
- Renormalization of Composite Operator on Lattice
Finite T Calculation (1)

How many points are needed in τ direction?

$40^3 \times 30$ lattice

$40^3 \times 30$ lattice

$\beta = 6.47$

isotropic lattice

$N_\tau \approx 30$ or larger: needed
Finite T Calculation (2)

- This data suggest more than ~30 points are needed in τ direction at the highest T.

- The highest T : set to $\sim 2.5 T_c$

 In order to have large enough L_σ and N_τ, we employ anisotropic lattice

 \[\xi = \frac{a_\sigma}{a_\tau} = 4 \]
Number of Configurations

As of April 25, 2003

\(N_\sigma = 32, \quad \beta = 7.0, \quad \xi = 4.0 \)

<table>
<thead>
<tr>
<th>(N_\tau)</th>
<th>32</th>
<th>40</th>
<th>46</th>
<th>54</th>
<th>72</th>
<th>80</th>
<th>96</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T / T_c)</td>
<td>~2.3</td>
<td>~1.9</td>
<td>~1.6</td>
<td>~1.4</td>
<td>~1.04</td>
<td>~0.93</td>
<td>~0.78</td>
</tr>
<tr>
<td># of Config.</td>
<td>141</td>
<td>181</td>
<td>182</td>
<td>150</td>
<td>150</td>
<td>110</td>
<td>194</td>
</tr>
</tbody>
</table>

Fairly Large Statistics in Lattice Standard
Polyakov Loop and PL Susceptibility

Polyakov Loop

- $= 0$ in Confining Phase
- 0 in Deconfined Phase

Confining Phase Deconfined Phase

Polyakov Loop Susceptibility

- $\sim T_c$
- $\sim 2T_c$
- $\propto T$

M. Asakawa Kyoto University
Result at $T \sim 1.9T_c$ (PS Channel)

\[m \sim \rho_{\text{pert}}(\omega) \]
\[= \frac{3}{8\pi^2} \left(1 + \frac{11\alpha_s(\mu)}{3\pi} \right) \left(\frac{1}{2\sqrt{\kappa_s \kappa_c Z_{\text{PS}}(\mu a)}} \right)^2 \]
\[= \mathcal{O}(1) \]
Hadronic Correlations above T_c?

- $T \sim 1.4T_c$
 - Mass Gap?
 - Massive Free Quark Gas

- $T \sim 1.9T_c$
 - $m_\pi/m_\rho \sim 0.7$ (at $T = 0$)
 - Landau Damping?
 - But statistically NOT significant

- Similar Result on smaller lattice

![Graphs showing rho(\omega) vs. omega for different temperatures]

- $64^3 \times 16$
- $T \sim 1.5T_c$ and $3T_c$
- Chiral limit

Karsch et al. (01)
Is the width statistically significant?

PS Channel

Narrow Lowest Peak ↔ Broad Lowest Peak

M. Asakawa Kyoto University
Summary and Perspective

- Hadronic Spectral Functions in QGP Phase were obtained on large lattices at several T.

- It seems there are nontrivial modes in QGP.
- Sudden Qualitative Change between $1.4T_c$ and $1.9T_c$?
- Physics behind still unknown.

Further study needed for better understanding of QGP!