Neutrino Oscillations and the MaVaN Model

Kevin Weil
UW REU
Summer 2004
Outline

- Massive neutrinos and the Standard Model
- Neutrino oscillations
 - The standard picture
 - The MaVaN picture
- Outlook
Outline

- Massive neutrinos and the Standard Model
- Neutrino oscillations
 - The standard picture
 - The MaVaN picture
- Outlook
According to the Standard Model, all three neutrino masses are zero.

Nonzero masses can work, but require an extension of the model.

Difficult to measure masses because neutrinos rarely interact.

- A neutrino of moderate energy can penetrate many light years of lead!
- They’re passing through us right now.
Super-Kamiokande

- 50,000 ton underground water tank
- Photomultiplier tubes see results of electron neutrino interactions
 - But not the actual neutrinos
- Fewer results than expected
 - Resolution: neutrino oscillations, which can only happen with nonzero mass
Outline

- Massive neutrinos and the Standard Model
- Neutrino oscillations
 - The standard picture
 - The MaVaN picture
- Outlook
Neutrino Oscillations

- Consider only electron and muon neutrinos
 - “Flavor eigenstates” $|\nu_e\rangle, |\nu_\mu\rangle$
- Different from the eigenstates of the Hamiltonian
 - “Mass eigenstates” $|\nu_1\rangle, |\nu_2\rangle$
- Related by a (vacuum) mixing angle θ_0
 - To get from one basis to the other, multiply by a unitary transformation $U(\theta_0)$:

$$
\begin{pmatrix}
|\nu_e\rangle \\
|\nu_\mu\rangle
\end{pmatrix} =
\begin{pmatrix}
\cos(\theta_0) & \sin(\theta_0) \\
-\sin(\theta_0) & \cos(\theta_0)
\end{pmatrix}
\begin{pmatrix}
|\nu_1\rangle \\
|\nu_2\rangle
\end{pmatrix}
$$
Outline

- Massive neutrinos and the Standard Model
- Neutrino oscillations
 - The standard picture
 - The MaVaN picture
- Outlook
A Quick Derivation (1 of 4)

- In the mass eigenstate basis, the mass matrix is
 \[M_{\text{mass}} = \begin{pmatrix} m_1 & 0 \\ 0 & m_2 \end{pmatrix} \]

- In the flavor eigenstate basis, it is then
 \[M_{\text{flavor}} = U(\theta_0) M_{\text{mass}} U^\dagger(\theta_0) \]
 \[= (m_2^2 - m_1^2) \begin{pmatrix} -\cos(2\theta_0) & \sin(2\theta_0) \\ \sin(2\theta_0) & \cos(2\theta_0) \end{pmatrix} + \frac{1}{2} (m_2^2 + m_1^2) \mathbb{1} \]
A Quick Derivation (2 of 4)

- In the non-relativistic limit, $\sqrt{p^2 + m^2} \approx p + \frac{m^2}{2p}$
- The kinetic energy is then
 \[
 T = p\mathbf{1} + \frac{1}{2p} M_{\text{flavor}}^2
 \]
 \[
 = \frac{1}{4p} \left(m_2^2 - m_1^2 \right) \begin{pmatrix} -\cos(2\theta_0) & \sin(2\theta_0) \\ \sin(2\theta_0) & \cos(2\theta_0) \end{pmatrix} + \frac{1}{4p} \left(4p^2 + m_2^2 + m_1^2 \right) \mathbf{1}
 \]
- Wolfenstein (1978) derives potential term (MSW effect)
 - Matter almost entirely first-generation leptons and quarks
 - Weak charged current interactions single out the electron neutrino component

\[
V_{\text{MSW}} = \sqrt{2} G_F n_e \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}
\]
A Quick Derivation (3 of 4)

- Define $\delta m^2 = m_2^2 - m_1^2$
- Drop terms proportional to the identity
- Define $\Omega = \frac{2\sqrt{2} G_F n_e E}{\delta m^2}$

\[
H_{\text{eff}} = \frac{\delta m^2}{4} \begin{pmatrix}
- (\cos(2\theta_0) - \Omega) & \sin(2\theta_0) \\
\sin(2\theta_0) & \cos(2\theta_0) - \Omega
\end{pmatrix}
\]

- After some algebra and trigonometry:

\[
\sin^2(2\theta_m) = \frac{\sin^2(2\theta_0)}{\sin^2(2\theta_0) + (\cos(2\theta_0) - \Omega)^2}
\]

- Mixing angle changes in matter!
From QM,

\[|\nu_j(t)\rangle = |\nu_j(0)\rangle \exp \left(-i \int_0^t E_j(t') \, dt' \right) \]

Use the adiabatic approximation (essentially assuming density varies slowly):

\[
P_{\nu_e \rightarrow \nu_e} = |\langle \nu_e(T) | \nu_e(0) \rangle|^2
= \cos^2(\theta_m) \cos^2(\theta_0) + \sin^2(\theta_m) \sin^2(\theta_0) + \frac{1}{2} \sin(2\theta_m) \sin(2\theta_0) \cos \left(\int_0^T (E_2(t') - E_1(t')) \, dt' \right)
\rightarrow \frac{1}{2} + \frac{1}{2} \cos(2\theta_m) \cos(2\theta_0)\]
No More Derivations!

The survival probability of electrons as functions of energy

Energy (MeV)
Outline

- Massive neutrinos and the Standard Model
- Neutrino oscillations
 - The standard picture
 - The MaVaN picture
- Outlook
Add a new scalar field, the “acceleron” A

Postulate a heavy sterile (dark) neutrino
- Mass dependent on expectation value hA_i, which is a function of n_e

Physical justification: measured dark energy density and neutrino energy density are similar
- MaVaNs can help explain this without fine tuning
- Many more cosmological justifications - see hep-ph/0309800

But do they agree with experimental results?
Simplify model by integrating out heavy sterile neutrino

- Assume \(M_{\text{sterile}} = K n_e^r \)

New Hamiltonian is

\[
H_{\text{MaVaN}} = \frac{1}{2E} \frac{m_D^4}{K^2} n_e^{-2r} \left(\frac{2\sqrt{2} K^2 G_F n_e^{2r+1} E}{m_D^4} + \sin^2(\theta) \begin{pmatrix} \sin(\theta) \\ \cos(\theta) \end{pmatrix} \begin{pmatrix} \sin(\theta) \\ \cos(\theta) \end{pmatrix} \right)
\]

- Radically different electron density dependence
Reproducing Measurements

- Theory of neutrino masses has a new basis
 - Must reproduce experimental results to be useful
- We can!
Outline

- Massive neutrinos and the Standard Model
- Neutrino oscillations
 - The standard picture
 - The MaVaN picture
- Outlook
Outlook

- This is a very positive result -- no a priori reason that MaVaNs should reproduce experimental results
- Experiments like KamLAND provide further constraints to test
- Lots to explore!
Thanks

• To my two great advisors, Ann Nelson and Neal Weiner
• To my fellow REU students
• To UW Physics
• To the NSF