Martin Savage

image
BSc University of Auckland (1984)

MSc University of Auckland (1985)

PhD California Institute of Technology (1990)

Publications

My scientific research activities are now focused on learning and applying quantum computing and quantum information theory to Grand Challenge problems in nuclear physics. The classical computing resources required for precise QCD (lattice) predictions in finite-density systems, in non-equilibrium systems, and in fragmentation are estimated to be beyond exascale, in general, due to the sign problem in sampling the path integral and due to calculations being performed in Euclidean space. As a founding member of the NPLQCD lattice QCD collaboration (2004), we developed and applied lattice QCD techniques to perform calculations of light nuclei and few baryon systems. The precision of many such calculations are limited by the computational resources that are available, the need for which is determined, in part, by the signal-to-noise problem (a sign problem). Quantum computing offers the possibility of computing finite density systems, both static and time-dependent, in Minkowski space with high precision. With increasing access to quantum devices, we are developing algorithms for quantum field theories and nuclear effective field theories to solve these systems on present-day and future quantum computers. We are forming collaborations with other researchers, national laboratories and technology companies that will be essential in this endeavour. This is an emerging and exciting area of reseach in nuclear and particle physics that has the potential to radically change these fields, and scientists at all levels, from undergraduate students, graduate students, postdoctoral researchers and more senior scientists, are welcome to join us. [June 2018.]

Sponsors

pix pix pix pix
pix

Collaborations

image image

Contact

Martin Savage
Institute for Nuclear Theory
University of Washington
Box 351550
Seattle, WA 98195-1550

mjs5 (AT) uw.edu

Office: (206) 543-7481
Fax: (206) 685-9829
Office : C408 Physics and Astronomy Building