Comment on "Jahn-Teller effect for the negatively charged C$_{60}$ molecule: Analogy with the silicon vacancy"

K. Yabana and G. Bertsch

Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824-1116
(Received 27 December 1991)

We point out that the effective U due to vibrational couplings is a factor of 2 larger than calculated by Lannoo et al., due to off-diagonal interactions neglected in their work.

Lannoo et al.1 found an effective interaction between valence electrons on C$_{60}$ due to Jahn-Teller distortions of magnitude $U = -0.05$ eV. This is twice the energy shift of a single electron in the harmonic approximation, and thus agrees with the single-electron energy shift $\Delta E = -0.024$ eV reported in Ref. 2. We wish to point out here that these calculations neglect significant off-diagonal matrix elements of the electron-vibration coupling. Although Lannoo et al. write down a Hamiltonian with off-diagonal matrix elements, they minimize in a space that has a static valence electron and static deformation. In the harmonic approximation, it is equivalent to the perturbation expression

$$
\Delta E_{\text{static}} = -\sum_{\alpha} <i,0|V|i,\alpha >^2 /\hbar \omega_{\alpha}
$$

where the notation $|i,\alpha >$ is a state with an electron in orbital i and the vibrational wave function with a quantum of excitation in the α mode. The valence electron is in the t_{1u} multiplet of states, and in Ref. 1 the state i was chosen to minimize the energy. However, the full perturbation expression should have an additional sum over final electron states in the t_{1u} multiplet,

$$
\Delta E_{\text{full}} = -\sum_{\alpha,j} <i,0|V|j,\alpha >^2 /\hbar \omega_{\alpha}.
$$

We have recalculated these quantities using the electron Hamiltonian of Refs. 3 and 4 and the vibrational Hamiltonian of Ref. 5. We find values $\Delta E_{\text{static}} = -0.023$ eV and $\Delta E_{\text{full}} = -0.049$ eV, i.e., a doubling when the off-diagonal terms are included.

These relative magnitudes are easy to understand if one replaces the finite-symmetry group by the full rotation group. The t_{1u} state behaves like a state of orbital symmetry $l = 1$, and the dominant H_2 vibration behaves like an $l = 2$ state in a spherical basis. Then the ratio of perturbations would be given by a Clebsch-Gordan coefficient, $\Delta E_{\text{full}}/\Delta E_{\text{static}} = (1020|10)^{-2} = 2.5$.

The effective U should be calculated using the full perturbation formula in the two-particle state with symmetry $t_{1u} \times t_{1u} = A$. This is the state $|A >= \sum_j |jj^* > /\sqrt{3}$. The resulting U is twice ΔE_{full}, while the corresponding U in the static state $|ii^* >$ is twice ΔE_{static}.

Thus we agree with Refs. 1 and 2 for the calculations they reported, but the full vibrational contribution to U should be -0.1 eV. This is still too small to overcome the Coulomb repulsion and make an attractive interaction that would explain the superconductivity.

\footnotesize
\begin{itemize}
\end{itemize}

\normalsize