Numeric and symbolic evaluation of the pfaffian of general skew-symmetric matrices

C. González-Ballestero, L.M. Robledo, G.F. Bertsch

Abstract

Evaluation of pfaffians arises in a number of physics applications, and for some of them a direct method is preferable to using the determinantal formula. We discuss two methods for the numerical evaluation of pfaffians. The first is tridiagonalization based on Householder transformations. The main advantage of this method is its numerical stability that makes unnecessary the implementation of a pivoting strategy. The second method considered is based on Aitken’s block diagonalization formula. It yields to a kind of LU (similar to Cholesky’s factorization) decomposition (under congruence) of arbitrary skew-symmetric matrices that is well suited both for the numeric and symbolic evaluations of the pfaffian. Fortran subroutines (FORTRAN 77 and 90) implementing both methods are given. We also provide simple implementations in Python and Mathematica for purpose of testing, or for exploratory studies of methods that make use of pfaffians.

1. Introduction

In a number of fields in physics, the formal equations derived from the theory make use of the pfaffian of some skew-symmetric matrix appearing in the theory. For example, the pfaffian arises in the treatment of electronic structure with quantum Monte Carlo methods [1], the description of two-dimensional Ising spin glasses [2], and the evaluation of entropy and its relation to entanglement [3]. Pfaffians occur naturally in field theory and nuclear
physics in formalisms based on fermionic coherent states requiring the evaluation of Gaussian–Grassman integrals [4–7]. A recent application is to the calculation of the overlap of two Hartree–Fock–Bogoliubov (HFB) product wave functions [8], needed for nuclear structure theory. While there is a simple formula for the pfaffian of a skew-symmetric matrix M in terms of the determinant,

$$\text{pf}(A) = \sqrt{\text{det}(A)}$$ \hspace{1cm} (1)

the so-called “sign problem of the overlap” [9] associated with the square root motivates the use of numerical algorithms that evaluate it directly. The most straightforward method, the rule of “expanding in minors” [10], has bad scaling with the size of the matrix and is prohibitive for large matrices. In this paper we discuss two alternative methods that have the same scaling property as the normal N^3 algorithms for the determinant. The methods are implemented in the FORTRAN 77 and 90 subroutines provided in the accompanying program library. We also comment on the practical implementation of the two methods in Mathematica and in the Python programming language.

2. Evaluation of the pfaffian

The pfaffian $\text{pf}(A)$ is reduced to a simple form that is easily evaluated by making repeated use of transformation formula given in Appendix A,

$$\text{pf}(B^TA^T) = \det(B) \text{ pf}(A).$$ \hspace{1cm} (2)

In order to perform the numerical evaluation of the pfaffian of a complex skew-symmetric matrix A we reduce the skew-symmetric matrix to a tridiagonal form A_{TR} by using unitary matrices U. Once it is in this form, the evaluation of the pfaffian is straightforward (see below).

2.1. Reduction to tridiagonal form by mean of Householder transformations

In this method, we will use the well-known Householder transformations [11] (see [12] for a generalization and [13] for a modern account) to reduce A to tridiagonal form. We present it in some detail because the generalization to the complex number field is not entirely trivial.

Complex Householder transformations have the form

$$P = I - 2 \frac{u \otimes u^+}{|u|^2}$$ \hspace{1cm} (3)

where u is an arbitrary complex row vector $u = (u_1, u_2, \ldots, u_N)$ and $(u \otimes u^+)_{ij} = u_i u_j^*$. The vector u must be chosen to zero all the elements of a vector x except a given one. If we take $u = x \mp e^{i \arg(x_j)} |x_j| e_j$, with $(e_j)_k = \delta_{jk}$, it can be easily proved that

$$P_u x = e^{\pm i \arg(x_j)} |x_j| e_j$$

as required. The freedom on the sign in the expression defining the vector u can be used to make sure that the vector u is non-zero. The rest of the Householder triagonalization procedure follows exactly as in the real case. Consider a skew-symmetric matrix of dimension N (even)

$$A = \begin{pmatrix} 0 & a_{12} & a_{13} & \cdots \\ -a_{12} & 0 & 0 & \cdots \\ -a_{13} & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} (N-1)A$$ \hspace{1cm} (4)

The Householder transformation matrix is

$$P_1 = \begin{pmatrix} 1 & 0 & 0 & \cdots \\ 0 & 0 & (N-1)P_1 \\ 0 & 0 & \vdots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

where $(N-1)P_1$ is built by using Eq. (3) and taking the vector x (of dimension $N-1$) as $(a_{12}, a_{13}, \ldots)^T$. The resulting transformed matrix is given by

$$P_1 A P_1^T = \begin{pmatrix} 0 & k_1 & 0 & \cdots \\ -k_1 & 0 & \cdots & 0 \\ 0 & -k_2 & \cdots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ 0 & \cdots & 0 & k_{N-1} \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} (N-1)A$$ \hspace{1cm} (5)

Using a well-known property of the pfaffian (see Appendix A) we deduce from the above identity that

$$\text{det}(P_1) \cdots \text{det}(P_{N-2}) \text{ pf}(A) = \text{ pf}(A_{TR})$$

where A_{TR} is the tridiagonal and skew-symmetric matrix of the right hand side of Eq. (5). Taking into account that the determinant of any Householder matrix is -1 and that N is even, we can express the pfaffian of A in terms of the pfaffian of the tridiagonal A_{TR}

$$\text{pf}(A) = \text{ pf}(A_{TR})$$

As will be shown below the pfaffian of a tridiagonal skew-symmetric matrix is simply given by $k_1 k_2 \cdots k_{N-1} = \prod_{i=1}^{N/2} k_{2i-1}$ (this result can also be obtained using the “minor expansion” formula [10]) so that we obtain

$$\text{ pf}(A) = \prod_{i=1}^{N/2} k_{2i-1}$$ \hspace{1cm} (6)

Surprisingly, the pfaffian does not depend upon $k_2, k_4, \text{etc.}$ In fact, it can be shown that even in the case of matrices where rows and columns with even indexes $i = 2q$ are not reduced to tridiagonal form the pfaffian is still given by Eq. (6). This nice property (to be shown to be true below) allows to half the numerical burden as only the $(N-2)/2$ Householder transformations $P_1, P_2, \ldots, P_{N-3}$ are required to obtain $k_1, k_2, \text{etc.}$ In this case, we have to take the precaution to multiply the result of Eq. (6) by the phase $(-1)^{(N-2)/2}$.

In terms of numerical stability, the Householder transformation is very robust and there is no need to consider any “pivoting” strategy common to other methods. However, the presence of the square root of x and the argument $\arg(x_j)$ of complex quantities prevents an easy implementation of the Householder triagonalization procedure for symbolic computation. For this purpose the second method described in the next section is far easier to implement.
2.2. Aitken’s block diagonalization formula

There is an alternative method for the calculation of the pfaffian, which is also well suited for a symbolic implementation and that relies on an expression for the pfaffian of a bipartite skew-symmetric matrix. Let us start with a general skew-symmetric matrix A (dimension N, even) given by

$$A = \begin{pmatrix} R & Q \\ -Q^T & S \end{pmatrix}$$

(7)

where R and S are square skew-symmetric matrices and Q is a general rectangular matrix (to account for the case where R and S have different dimensions). Using Aitken’s block diagonalization formula (see [14] for an early use of the formula and [15] for a recent and thorough reference) for a bipartite matrix we obtain

$$\begin{pmatrix} I & 0 \\ QTR^{-1} & I \end{pmatrix} \begin{pmatrix} R & Q \\ -Q^T & S \end{pmatrix} \begin{pmatrix} I & -R^{-1}Q \\ 0 & I \end{pmatrix} = \begin{pmatrix} R & 0 \\ 0 & S + QTR^{-1}Q \end{pmatrix}$$

(8)

where the matrix $S + QTR^{-1}Q$ is referred to in the literature as the Schur complement of the R block of matrix A, A/R (see, for instance, [15]). For the special case of a skew-symmetric matrix A, the matrices R and S are also skew-symmetric and the transformation of the matrix A is a congruence (i.e. the matrix acting on the left hand side of A is the transpose of the one acting on the right hand side). Denoting

$$P_1 = \begin{pmatrix} I & 0 \\ QTR^{-1} & I \end{pmatrix}$$

(9)

Eq. (8) becomes

$$P_1AP_1^T = \begin{pmatrix} R & 0 \\ 0 & S + QTR^{-1}Q \end{pmatrix}$$

An equivalent expression involving S^{-1} instead of R^{-1} is easily obtained

$$P_2AP_2^T = \begin{pmatrix} R + QS^{-1}Q^T & 0 \\ 0 & S \end{pmatrix}$$

(10)

By using the property $\text{pf}(P^TAP) = \det(P)\text{pf}(A)$ (see Appendix A) and taking into account that $\det P_1 = \det P_2 = 1$, we come to

$$\text{pf}(A) = \text{pf}(P)\text{pf}(S + QTR^{-1}Q) \quad \text{(11)}$$

$$= \text{pf}(R + QS^{-1}Q^T)\text{pf}(S) \quad \text{(12)}$$

Another nice property of the matrices P_1 and P_2 is that their inverses can be obtained very easily

$$P_1^{-1} = \begin{pmatrix} I & 0 \\ -QTR^{-1} & I \end{pmatrix}$$

(13)

and

$$P_2^{-1} = \begin{pmatrix} I & QS^{-1} \\ 0 & I \end{pmatrix}$$

(14)

These expressions of the inverses explicitly show that both P_1 and P_2 are not orthogonal matrices.

Let us now apply the above result to an arbitrary skew-symmetric matrix of dimension $N = 2M$ which is written in block form as

$$A = \begin{pmatrix} A^{(1)}_{N-1} & A_N \\ -A_N^T & -a_{N-1,N} \end{pmatrix}$$

(15)

where $A^{(1)}$ is a skew-symmetric square matrix of dimension $N - 2 = 2(M - 1)$ and A_{N-1} and A_N are column vectors $A_{N-1} = \{A_{i,N-1}, i = 1, N - 2 \}$ and $A_N = \{A_{i,N}, i = 1, N - 2 \}$ both of dimension $(N - 2) \times 1$. In the language of Eq. (7) the matrix R is the matrix $A^{(1)}$, the matrix Q is a rectangular matrix of dimension $2 \times (N - 2)$ made of the two column vectors, A_{N-1} and A_N and finally the matrix S is the 2×2 skew-symmetric matrix with matrix element $S_{12} = a_{N-1,N}$. Using the ideas of Aitken’s block diagonalization formula, it is easy to show that the matrix $\tilde{A} = D_1^TAD_1$ is in block diagonal form

$$\tilde{A} = \begin{pmatrix} \tilde{A}^{(1)} & 0 \\ 0 & 0 \end{pmatrix}$$

(16)

with a matrix D_1 of the form

$$D_1 = \begin{pmatrix} 1_{N-2} & 0 \\ X & 1 \end{pmatrix}$$

(17)

where 1_{N-2} stands for the identity matrix of dimension $N - 2$ and both X and Y are row vectors of dimension $1 \times (N - 2)$ and given by $X = -a_{N-1,N}A_N^T$ and $Y = a_{N-1,N}A_N$. In Eq. (16) the skew-symmetric matrix $\tilde{A}^{(1)}$ is given by

$$\tilde{A}^{(1)} = A^{(1)} + a_{N,N-1}A_N^{-1}A_N^T - A_{N-1}a_{N-1,N}^{-1}A_{N-1}^T \quad \text{(18)}$$

Taking into account that $\det D_1 = 1$ we obtain

$$\text{pf}(A) = \text{pf}(\tilde{A}) = a_{N-1,N}\text{pf}(\tilde{A}^{(1)})$$

The algorithm can be applied recursively to $\tilde{A}^{(1)}$ to obtain

$$\text{pf}(A) = a_{N-1,N}\tilde{A}^{(1)}_{N-3,N-2} \text{pf}(\tilde{A}^{(2)})$$

so that, after $M - 1$ iterations, the pfaffian is obtained.

This procedure can be easily implemented for a skew-symmetric tridiagonal matrix, as the transformed matrices in Eq. (18) coincide with the original ones; for instance, $A^{(1)} = A^{(1)}$. As a consequence, the pfaffian of a tridiagonal matrix is given by

$$\begin{pmatrix} 0 & d_1 & 0 & \cdots & 0 \\ -d_1 & 0 & d_2 & \cdots & 0 \\ 0 & -d_2 & 0 & \cdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & \cdots & 0 & -d_{2N-1} & 0 \end{pmatrix}$$

$$= d_1d_3\ldots d_{2N-1} = \prod_{i=1}^{N} d_{2i-1}$$

As mentioned before, this result can be extended to matrices where rows 2, 4, etc. and columns 2, 4, etc., are not in tridiagonal form. This is easily justified by noticing that $A^{(1)} = A^{(1)}$ is also satisfied if only the A_{N} column is zero.

One could think of using the above property in this case, but it turns out that the update $S \rightarrow S + QTR^{-1}Q$ is not modified by setting to zero one of the rows of Q instead of the two. Therefore the computational cost remains the same.
2.2.1. Pivoting

As a consequence of the division by matrix elements like $a_{N-1,N}$ in the first iteration, the numerical stability of the algorithm requires the use of pivoting strategy in the implementation of the method. Full pivoting amounts to search the whole matrix for the matrix element with the largest modulus and exchange it with the required matrix element. For instance, in the first iteration of the procedure, the matrix element $a_{p,q}$ $(p < q)$ with the largest modulus is searched for and exchanged with the matrix element $a_{N-1,N}$. In this way we avoid dangerous divisions by small (or even zero) matrix elements. We have to take into account that in the present case, the exchange of both columns and rows is required to preserve the skew-symmetric nature of the matrices involved. To carry out the exchange of rows and columns we will use the exchange matrix $P(ij)$ that, when applied to the right of an arbitrary matrix, exchanges columns i and j. The exchange matrix is given by the matrix elements

$$P(ij)_{kl} = \delta_{kl} - \delta_{i,l}\delta_{k,j} - \delta_{j,l}\delta_{k,i} + \delta_{i,j}\delta_{k,l} + \delta_{j,i}\delta_{k,l}$$

(19)

To exchange the corresponding rows we have to apply $P(ij)^T$ to the left of the matrix (notice that $P(ij)$ is symmetric). With the help of these matrices we can write the matrix after pivoting $A_{p,q}$ with $a_{N-1,N}$ and $a_{p,q}$ with $a_{N-1,N}$ as

$$A_P = P^T(N - 1, p)P^T(N, q)AP(N - 1, p)P(N, q)$$

As a consequence of such exchange and taking into account that $\det P(ij) = -1$ we can conclude that the pfaffian of A does not change by the pivoting procedure. Finally we obtain

$$A = (N, q)P(N - 1, p)AP^T(N - 1, p)P^T(N, q)$$

$$= P(N, q)P(N - 1, p)P^{-1}(N - 1, p)DP^{-1}(N, q)$$

where A_P has the same structure as S in Eq. (16). As before, $\text{pf}(A) = \text{pf}(A_P) = (A_P)_{N-1,N} \text{pf}(A_P(11))$ and repeating recursively the whole procedure $M - 1$ times we obtain the pfaffian as the product of the corresponding matrix elements.

2.2.2. Cholesky-like decomposition of a skew-symmetric matrix

Although it is not necessary in order to compute the pfaffian, it can be useful to show that even with pivoting we can write the matrix A as

$$A = PLT\tilde{A}LP$$

(20)

where P is the product of exchange matrices as in Eq. (19), L is the product of matrices of the D^{-1} type, Eq. (17), and therefore is a lower triangular matrix with ones in the main diagonal and finally, \tilde{A} is a skew-symmetric matrix in canonical form, i.e. a block diagonal matrix with skew-symmetric, 2×2 blocks in the diagonal. This decomposition of a general skew-symmetric matrix A resembles the Cholesky decomposition of a general symmetric positive definite matrix and can be useful in formal manipulations like, for instance, the inversion of the matrix A. In order to show that Eq. (20) holds the only required property is that, when applying the pivoting procedure to $A_P^{(1)}$ the exchange matrices required $P(N - 2, s)P(N - 3, r)$ have the property of preserving the structure of the matrix D_1 (and its inverse). For instance,

$$D_1^{T-1}P(N - 2, s)P(N - 3, r) = P(N - 2, s)P(N - 3, r)D_1^{T-1}$$

with D_1^{T-1} a matrix that is obtained from D_1^{T-1} by exchanging rows $N - 2$ and s and $N - 3$ and r and therefore has the same upper triangular structure with ones in the diagonal as the original matrix D_1^{T-1}. Using this property we can move all the exchange matrices to the right (or to the left) and the remaining matrix will be the product of triangular matrices (lower for products involving D^{-1}) with ones in the diagonal.

As mentioned earlier, Aitken’s method is better adapted to symbolic evaluations. However, one must take care that in each step of the process some specific matrix elements are non-zero.

We note that after the completion of this paper an algorithm similar to the one of this section has been put forward [16] in connection with supersymmetric models of Quantum Field Theory [17].

3. Fortran implementation

The implementation of the algorithms considered in this paper in a high level computer language is straightforward. With this paper we provide, specific code in FORTRAN, both 77 and 90, and with real or complex arithmetic. The algorithms are easy to follow and the comments included in the code are useful guides. Just a few remarks are in order: to implement the tridiagonalization procedure in Fortran, it is advantageous to use the BLAS package [18] to perform the required matrix by vector multiplication and rank two update. Unfortunately there are no equivalent in the skew-symmetric case of the routines SYM (to multiply a symmetric matrix by a vector) or SYR2 (to perform a symmetric rank two update) but the general procedures GEMV and GERU can be used instead. On output, both the pfaffian of the matrix and the set of vectors required to bring it to tridiagonal form are returned. In this routine a switch has been introduced to control if the number of Householder transformations is reduced by a factor of two or not. In the current implementation the number of operations for the full case scales as N^3 multiplications and N^3 sums (we do not consider the skew-symmetric character of the matrix in this count) and it is exactly half that number for the case where only half the transformations are performed.

For the implementation of the method based on Aitken’s block diagonalization formula a pivoting strategy is required. We have used full pivoting in our implementation due to its robustness. The routines provided only require the upper part of the skew-symmetric matrix. The lower part is destroyed and replaced with the tridiagonal transformation matrix that brings the skew-symmetric matrix to canonical form upon congruence. An integer vector is also returned to reconstruct the required exchange of rows and columns. The operation count in this case scales as $N^3/6$ multiplications and $N^3/6$ sums and therefore it is significantly smaller than the operation count of the Householder method. However, we have not considered the computational cost of full pivoting in the Aitken’s method that also scales as N^3 and might have a strong impact in the total computational cost.

Perhaps the best test to check the validity of the two implementations is to compute the pfaffian of a skew-symmetric matrix using both procedures in order to compare the output. If it is the same up to a given accuracy then it is very likely that the two implementations are correct. We have written a test program (also included in the distribution) that generates skew-symmetric matrices of given dimension with random entries and computes the pfaffian using both techniques. In our tests the pfaffians computed both ways coincide up to one part in 10^{10} with matrices 1000×1000. This result also supports the adequacy of the implementation in terms of numerical stability. Another possibility to test the numeric and symbolic implementation is to use the analytical formula given in Appendix B for a specific kind of 8×8 matrices. A test program implementing this approach has also been included in the distribution.

To finish this section we will briefly comment on the timing of the FORTRAN numerical implementations mentioned. We have used a personal computer under Linux and with an Intel Xeon
W3550 processor running at 3.07 GHz. We have computed the pfaffian of matrices of various dimensions up to \(N = 1000 \) and the results are given in Table 1. The results show that a typical computation of the pfaffian of a 200 \(\times \) 200 matrix takes around 10 milliseconds in the three implementations. For matrices as large as 1000 \(\times \) 1000 the computing time goes up to around 1 second which is consistent with a scaling law going as the third power of the dimension. One also sees that the full Householder takes twice as long to run as the half Householder for large matrices. It is also interesting to note the strong impact of full pivoting in the Aitken's method: the operations count discussed previously suggested that Aitken's should be six times faster than full Householder. Another possible reason is the performance of the machine-specific implementation of the BLAS library used in the Householder case.

4. A simple Python implementation

We provide here a simple implementation of the tridiagonal reduction method (see [14] and [19]) in Python, which may be useful for testing purposes. It is similar to the Householder, but it only uses simple row and column operations that have determinants of unity. The code is:

```python
def pfaff_py(m):
    mat=copy(m)
    ndim = shape(mat)[0]
    for j in range(ndim/2):
        t1=1.0
        if kp != 1:
            kp=abs(mat[0,1]) #pivot
        if kp != 1:
            kp=abs(mat[0,k]) #pivot
            if mat[1,k] != 0:
                tv=mat[1,k]*mat[0,i]/mat[1,0]
                mat[1,k] -= tv
                t1 = -t1
                t1 *= mat[0,i]
        else:
            t1=0.0
            break
    return t1
```

The matrix is assumed to have been constructed with the `array` function in the Numpy library. Both real and complex matrices are permitted.

5. A simple Mathematica implementation

We also provide a simple Mathematica implementation of the method based on Aitken's block diagonalization formula. As mentioned above, this method requires pivoting to avoid divisions by small (or zero) numbers. In the symbolic implementation, this issue is solved by replacing the denominator by a variable (OO on the implementation below) in case it is zero and an additional limit when the variable tends to zero is performed at the end. The two Mathematica modules required are:

```mathematica
Aitken[M_,n_,OO_]:=
    Module[{MM=M,i,p},
    If[MM[[n-1,n]]==0,MM[[n-1,n]]=OO;MM[[n,n-1]]=OO];
    For[i=1,i<=n-2,i++,
    p=p*MM[[n-1,n]];
    If[MM[[n-1,n]]==0,MM[[n-1,n]]=OO;MM[[n,n-1]]=OO];
    Module[{MM=M,i,j,p},
    For[k=1,k<n-1,k++,
    pvt=abs(M[i,j]);
    MM[[i,j]]*MM[[j,i-1]]-MM[[i,j-1]]*MM[[j,i]]=MM[[i,i-1]]-MM[[i,i]];]
    For[k=n-1,n,k--,
    pvt=abs(M[i,j]);
    MM[[i,j]]*MM[[j,i-1]]-MM[[i,i-1]]*MM[[i,j-1]]=MM[[i,i-1]]-MM[[i,i]];]
    ];
    ];
    Limit[pp,OO->0]];
```

6. Conclusions

The issue of how to compute both numerically and symbolically the pfaffian of a skew-symmetric matrix has been addressed using two different approaches. Numerical stability issues are discussed and methods to assure the desired accuracy are fully incorporated. A collection of subroutines and test programs in FORTRAN (both 77 and 90, double precision and complex) are provided. A few comments on the implementation of the algorithms in Mathematica and Python are also given.

Acknowledgements

We acknowledge K. Roche for a careful reading of the manuscript and several suggestions. This work was supported by MICINN (Spain) under research grants FPA2009-08958, and FIS2009-07277, as well as by Consolider-Ingenio 2010 Programs CPAN CSD2007-00042 and MULTIDARK CSD2009-00064.

Appendix A. Definition and basic properties of the pfaffian

The pfaffian of a skew-symmetric matrix \(R \) of dimension \(2N \) and with matrix elements \(r_{ij} \) is defined as

\[
\text{pf}(R) = \frac{1}{2^N N!} \sum_{\text{Perm}} \epsilon(P) r_{i_1 j_1} r_{i_2 j_2} \cdots r_{i_N j_N}
\]

where the sum extends to all possible permutations of \(i_1, \ldots, i_N \) and \(\epsilon(P) \) is the parity of the permutation. For matrices of odd dimension the pfaffian is by definition equal to zero. As an example, the pfaffian of a \(2 \times 2 \) matrix \(R \) is \(\text{pf}(R) = r_{12} r_{34} - r_{13} r_{24} + r_{14} r_{23} \). Useful properties of the pfaffian are

\[
\text{pf}(P^T R P) = \text{det}(P) \text{pf}(R),
\]

\[
\text{pf}
\begin{pmatrix}
0 & R \\
-R^T & 0
\end{pmatrix}
= (-1)^{N(N-1)/2} \text{det}(R) \quad \text{(A.1)}
\]
where the matrix \(R \) is \(N \times N \) and

\[
pf\begin{pmatrix} R_1 & 0 \\ 0 & R_2 \end{pmatrix} = pf(R_1) pf(R_2)
\]

where \(R_1 \) and \(R_2 \) are skew-symmetric matrices. The matrices may be defined on the real or on the complex number fields.

Appendix B. Pfaffian of a test matrix

In this appendix we give the expression of the pfaffian of a test matrix which is big enough as not to be trivial but on the other hand is small enough as to render the explicit expression of the pfaffian manageable. The expression given below can be used to check both numerical and symbolic implementations of the pfaffian.

Consider the two general skew-symmetric matrices of dimension 4

\[
M = \begin{pmatrix} 0 & f_1 & m_{11} & m_{12} \\ -f_1 & 0 & m_{21} & m_{22} \\ -m_{11} & -m_{21} & 0 & f_2 \\ -m_{12} & -m_{22} & -f_2 & 0 \end{pmatrix}
\]

and

\[
N = \begin{pmatrix} 0 & g_1 & n_{11} & n_{12} \\ -g_1 & 0 & n_{21} & n_{22} \\ -n_{11} & -n_{21} & 0 & g_2 \\ -n_{12} & -n_{22} & -g_2 & 0 \end{pmatrix}
\]

where the matrix elements can be complex numbers. With these two matrices and the identity 4 \(\times \) 4 matrix we build the skew-symmetric matrix

\[
S = \begin{pmatrix} N & -I \\ I & -M^* \end{pmatrix}
\]

of dimension 8 \(\times \) 8 (see Ref. [8] for the physical context of this matrix). It is relatively easy to compute its pfaffian

\[
pf[S] = 1 + f_1^* g_1 + f_2^* g_2 + m_{11}^* n_{11} + m_{22}^* n_{22} + m_{12}^* n_{12} + m_{21}^* n_{21} + (f_1^* f_2^* - m_{11}^* m_{22} + m_{12}^* m_{21}^*)(g_1 g_2 - n_{11} n_{22} + n_{12} n_{21})
\]

References