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Model space truncation in shell-model fits
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We carry out an interacting shell-model study of binding energies and spectra in the sd-shell nuclei to examine
the effect of truncation of the shell-model spaces. Starting with a Hamiltonian defined in a larger space and
truncating to the sd shell, the binding energies are strongly affected by the truncation, but the effect on the
excitation energies is an order of magnitude smaller. We then refit the matrix elements of the two-particle
interaction to compensate for the space truncation and find that it is easy to capture 90% of the binding energy
shifts by refitting a few parameters. With the full parameter space of the two-particle Hamiltonian, we find
that both the binding energies and the excitation energy can be fitted with remaining residual error about 5%
of the average error from the truncation. Numerically, the rms initial error associated with our Hamiltonian is
3.4 MeV and the remaining residual error is 0.16 MeV. This is comparable to the empirical error found in
sd-shell interacting shell-model fits to experimental data [B. A. Brown and W. A. Richter, Phys. Rev. C 74,
034315 (2006)].
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The interacting shell model with fitted interactions is a
powerful predictive tool of nuclear structure theory [1,2],
but there has been little study of the error associated with
truncation of the shell model spaces. The basic premise is
that there exists some Hamiltonian of the nucleon degrees of
freedom that accurately describes nuclear structure properties.
The interacting shell model is then just a numerical method to
calculate the properties of that Hamiltonian. However, except
for the lightest nuclei, the spaces that one can include in the
calculation are much too small to obtain meaningful results
using the full Hamiltonian. The prevailing philosophy for the
interacting shell model in heavier nuclei is to use an effective
Hamiltonian fitted to the set of nuclei under study. Typically,
the effective Hamiltonian includes one- and two-body matrix
elements augmented by an overall scaling with mass number
A to take into account higher order operators in addition to the
known systematic scaling of the rms radius.

In this work we examine the role of space truncation with
a model study of spectra in sd-shell nuclei. We first define a
target Hamiltonian that can be solved in a larger space and
take the eigenenergies as the “experimental” data to be fitted.
We then carry out the sd-shell fits to the target spectra to
examine the characteristics of the fitted Hamiltonian.

Methodology. A recent shell-model fit to sd-shell nuclei
has been carried out by Brown and Richter [3]. The parameters
in the effective Hamiltonian are the 3 single-particle energies
of the (d5/2, d3/2, s1/2) orbitals and their 63 interaction matrix
elements. In addition, there is a parameter for the A-dependent
scaling of the interaction matrix elements, which is not
important for the fit [4]. The experimental data that were fitted
were the energies of 608 states in 77 nuclei.

For our model calculations, we shall try to follow Ref. [3]
with respect to the size and character of the data set to be
fit. We consider the nuclei in the sd shell for which Z � N ,
ranging from 17O to 40Ca. This gives 90 binding energies with
respect to the closed 16O core. Besides binding energies, we
also include the excitations of the 6 lowest excited states in the

spectrum where they exist. When there are fewer states in the
sd space, e.g., for the nuclei (Z,N) = (8, 9), (8, 20), we take
all the states of the spectrum. Altogether, we fit 559 excitation
energies.

The target values of the energies, simulating the experimen-
tal data, are calculated from a shell-model Hamiltonian in an
extended space. The choice of the space requires a compromise
between having the Hamiltonian be computable with modest
computer resources and having a space extension that will
systematically affect the properties across the range of nuclei
under study.

We will then fit the energies of the large space calculation
to Hamiltonian parameters for the small space. There are a
number of aspects to the refit. Most obviously, we ask how
much the rms residuals of the energy shifts shrink going from
the original parameters in the small space to a compete refit of
all the shell-model parameters. It is also interesting to see the
extent that simple parameters of the interaction can capture
the main effects of the shifts. We make this quantitative by
considering two simple models of the interaction and asking
how the rms residuals shrink using only the parameters in the
interaction model for the refit.

The target Hamiltonian. For the target Hamiltonian, we
begin with the full sd Hamiltonian and extend the space to
include all 2h̄ω excitations into higher oscillator shells. This
permits two-particle excitations into the pf shell and one-
particle excitations into the sdg shell. This space is large but
still reasonably calculable, with the largest matrix dimension
being 50 million.

Within the sd shell, the Hamiltonian matrix elements are
given by Brown and Richter’s USDB (universal sd-shell
interaction B) [3]; we take the values for A = 18 but do
not rescale them for different A. For the off-diagonal and the
pf sdg diagonal matrix elements, we take a contact interaction
with different strengths for the spin 0 and 1. The strengths
are chosen to roughly fit the largest matrix elements of the
USDB interaction. The coefficients of the δ functions are 450

0556-2813/2009/80(2)/027302(4) 027302-1 ©2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.80.027302


BRIEF REPORTS PHYSICAL REVIEW C 80, 027302 (2009)

and 300 MeV fm3 for isospin zero and one, respectively; the
integrals are evaluated in harmonic oscillator wave functions
with oscillator parameter h̄ω = 10.5 MeV. The single-particle
energies are taken to be 5 MeV for the pf orbitals and
10 MeV for the sdg orbitals, taken with respect to zero
energy in the USDB Hamiltonian. These energies are smaller
than Hartree-Fock single-particle energies, but the empirical
spectroscopy of intruder states, namely the typical excitation
energy of odd-parity state, requires a substantial reduction of
them.

The quantities to be fitted are the differences in energies of
the USDB Hamiltonian and the extended-space Hamiltonian.
One technical difficulty is ensuring that corresponding states
in the two Hamiltonians are properly paired. Furthermore, in
some nuclei there are intruder states in the extended-space
spectrum that lie below the states that should be paired.
The intruders are identified by examining the occupation
probabilities of the higher shells removed before making a
correspondence with the sd-space levels. The fraction of pf

and sdg components is generally between a few percent up
to about 20–30% with our interaction. The two states that
exceeded this had probabilities greater than 80%, permitting an
unambiguous identification as intruders. They were excluded
from the spectra to be fitted. Carrying out this procedure,
we find that the rms energy differences of the full data
sets is 3.4 MeV. Considering binding energies and excitation
energies separately, the rms differences are 9.2 and 0.53 MeV,
respectively.

Least-squares fit. We then fit the energy differences found
in the last section using the 63 matrix elements of the two-
particle interaction as fitting parameters. The single-particle
energies have the same values in both Hamiltonians and may be
directly extracted from the energies of the one-particle nucleus.
Those energies were kept fixed in the fits.

In data fitting, it is often the case that some parameters
are ill-determined and can assume large, unphysical values
when one carries out a linear least-squares fitting procedure.
The standard remedy is to make a singular value (SV)
decomposition of the least-squares sensitivity matrix and
monitor the quality of the fit as a function of the rank of the
SV decomposition. The results are shown in Fig. 1, with rms
averages for binding energy and excitation energy residuals
plotted separately. We see that an enormous improvement in
the binding energies can be achieved, a factor of 40 of reduction
of the rms error with 19 fitting parameters. By comparison, the
improvement in excitation energies is quite modest, reducing
the rms error by a factor of 2 with the rank 19 SV fit. The
quality of the fit becomes similar for binding energies and
excitation energies beyond rank 3. The overall improvement
in the energies is a factor of 10 at rank 19 and 20 with high-rank
fits. However, the high-rank fits can be deceptive because the
fitting procedure relies on the Feynman-Hellman theorem to
linearize the error matrix. Qualitative information bearing on
the linearization approximation may be seen by plotting the
rms changes in the interaction parameters as functions of SV
rank. This is shown in Fig. 2. One sees that the interaction
parameters change by an average of 0.2 MeV for SV rank 19
and spike to 0.45 MeV at rank 63. For a scale, the rms average
two-body interaction in the original USDB parametrization
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FIG. 1. The rms residual error in the refitted energies as a
function of the parameter-space dimension in the singular value
decomposition. Solid circles, binding energies; crosses, excitation
energies. The initial value of the binding energy residual is off-scale
at 9.0 MeV.

is 1.9 MeV, suggesting that the interaction does not become
ill-determined, at least up to rank 30 or so. We have confirmed
the rank 30 results by rediagonalizing the Hamiltonian matrix
using the fitted interaction. The resulting energies have an rms
residual only 30% higher than the SV value, confirming the
utility of the linear approximation up to that rank.

Simple model Hamiltonians. Because only very few
parameters are needed to get the benefit of a refit, the
question naturally arises whether the key parameters can be
characterized in terms of simple Hamiltonians. For example, it
has been found that good results could be obtained by refitting
just the monopole part of a realistic interaction [2,5]; this
phenomenology has been applied to a number of interactions
[6–9] (for details we point the reader to Eqs. (9) and (10) and
Appendix B of Ref. [2] and Eq. (4.1) of Ref. [6]). Another
possibility, motivated by the Skyrme parametrizations [10,11]
and effective field theory [12], is to add an adjustable contact
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FIG. 2. The rms change in the 63 two-particle interaction matrix
element as a function of parameter-space dimension in the singular
value decomposition.
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FIG. 3. The rms residual error for simplified forms of the refitted
interaction. Solid circles, 12-term monopole interaction; crosses, two-
term monopole interaction; stars, two-term contact interaction.

term to the interaction. These two possibilities represent the
extremes of very long and very short for the characteristic
ranges of the induced interaction. Let us see how well they
work.

Monopole interaction. The most general monopole in-
teraction in the sd shell has separately adjusted coefficients
for the six combinations of subshells as well as for the two
isospins (T = 0 and 1). The SV fits are shown in Fig. 3 up
to rank 11. One sees that the lowest rank captures a very
large fraction of the error, and higher ranks make incre-
mental improvements. Asymptotically, the remaining error is
0.7 MeV, which is still four times larger than what can be
achieved in the 63-dimensional two-particle matrix elements
space. To understand better the nature of the refit producing
the large initial error reduction, we have also considered
a monopole interaction independent of subshells, i.e., an
interaction depending only on particle number. With two terms
for the isospin dependence, we find the fits shown by the
crosses in the figure. Interestingly, the two-term form gives
better fits in the rank 1 and 2 spaces than the full monopole.
This can be understood from conjugate gradient methods: the
steepest local gradient may in fact not lead to the lowest local
minimum.

Contact interactions. There are two ordinary δ-function
interactions, depending on spin (S = 0 or 1). The results of the
fit are shown as stars in Fig. 3 and in Table I. One sees that it
is much better than the monopole or the low-rank SV vectors
of the full sd interaction space.

Conclusion. With our model to study the effects of
truncation on the spectra of the interacting shell model, we
obtained quite dramatic findings. The energy shifts in the
binding energies are more than an order of magnitude larger
than those in the excitation energies. The binding energies’
shifts can be easily compensated by a one-order two-term
interaction of a very simple form, either monopole or contact,
with the contact interaction giving a better fit. The importance
of the monopole in the SV decomposition of the sensitivity
matrix was already shown in Ref. [13]. In that work, the
authors considered the entire spectrum of fixed J, T , and A.

TABLE I. The rms residuals (in MeV) in the SV decompo-
sition with various treatments of the parameter fitting.

Interaction No. of parameters

2 11 63

sd two-body 0.80 0.40 0.16
Full monopole 0.92 0.66
Reduced monopole 0.84
Contact 0.46

Our findings are similar, that a single operator close to the
monopole dominates the SV decomposition, but the ensemble
is very different—all the nuclei are in the Fock space but there
are only a few levels in each nucleus.

After a few-parameter fit, the residual errors in the binding
energies and the excitation energies are comparable and at the
level of 0.5 MeV. Further improvements can be made in the
full space of the 63 shell-model matrix elements, with rank 30
achieving a rms residual of 0.2 MeV. We note that the limiting
residual in the USDB fit to experimental data [3] is 0.13 MeV.

However, it should be cautioned that these results may
depend on the specifics of the Hamiltonian model in the
extended space. The overall strength of the off-diagonal
interactions cannot be changed very much without either
weakening the interaction below what shell systematics require
or enhancing it to an extent where many intruder states would
seriously contaminate the spectrum. On the other hand, the
spin dependence has been very much oversimplified in our
model and it could influence the fidelity of the ultimate fit in
the small space. For example, it would be interesting to repeat
the study including the tensor interaction, which is known to
have strong off-diagonal components.

In effective field theory [12], the machinery for performing
truncations by the renormalization group is well-developed,
with a systematic expansion ordered by counting powers
of the relevant momenta, which allows one to estimate the
error at a given order of truncation. For the shell-model
Hamiltonian, there is no obvious analogy to power counting
schemes, although one could argue that SV decomposition
provides a logical framework for error estimates. Indeed we
have seen that the linear approximation works very well for
estimating the change in the residual error. For example, as
we go (somewhat arbitrarily) from a rank 10 fit to a rank 30
fit using the SV decomposition, the change in the calculated
energies has a rms value of 0.36 MeV, which is within a factor
of 3 of the residual error in the complete fit. Besides giving an
internal error estimate, such considerations might be helpful
in assessing the possible improvements of the fits by going to
larger spaces. Finally, it might be interesting to apply such anal-
yses to other many-body approaches, such as energy-density
functionals, where one can introduce a very large number
of terms beyond the ten or so present in the most familiar
parametrizations.

It is intriguing that the error in the fit to experimental data,
0.13 MeV, is actually smaller than the truncation error of
our model Hamiltonian, 0.16–0.26 MeV. It might be that the
off-diagonal matrix elements in the model Hamiltonian are
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too strong. Certainly, the contact interaction has off-diagonal
matrix elements larger than those of a more realistic inter-
action. It also might be the case that the extreme truncation
in our model, only allowing 2h̄ω excitations in higher shells,
requires stronger higher-order operators than a more smooth
truncation might produce. In any case, the closeness of the
limiting error gives some hope that the accuracy of the

configuration-interaction theory might be improved by treating
the higher shells.
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