Ivan Vitev

Radiative Processes and Jet Modification at the EIC

INT program 18-3, Workshop week 4
EIC Symposium “Probing Nucleons and Nuclei in High Energy Collisions”
INT, Seattle WA, October 22-26, 2018
Outline of the talk

- New interest in particle and jet production in SIDIS
- Status of in-medium calculations in SIDIS, what is missing
- In-medium radiative corrections calculations
- New techniques, for particle and jet production in nuclei
- Event shapes at EIC
- Conclusions

Thanks to the organizers for the opportunity to discuss this physics

Much of the credit for this work goes to my collaborators:
Z. Kang, F. Ringer, M. Sievert, B. Yoon
Introduction
LRP recommendations

- We recommend a high-energy high-luminosity polarized EIC as the highest priority for new facility construction following the completion of FRIB.

NAS: Extensive list of findings

- EIC essential for US leadership in nuclear physics and accelerator design.
- Physics at EIC has very close connections to solid state and atomic physics, high energy physics, astrophysics and computing.
- ...
- To realize fully the scientific opportunities an EIC would enable, a theory program will be required to predict and interpret the experimental results within the context of QCD and, furthermore, to glean the fundamental insights into QCD that an EIC can reveal.

Critical gaps in the EIC program
SIDIS has played a key role in pushing the boundaries of QCD, nucleon structure, the TMD approach, and QCD in reactions with nuclei.

G. Abelof et al. (2016)

- There is a renewed interest in precision calculations of hadron and jet production at the EIC – wide range of applications.
In heavy ion collisions medium-modified parton showers are the cornerstone of high-p_T physics. These are the most significant effects and are not related to nPDFs and small-x physics.

Heavy flavor suppression, b-jets, $\text{di}-b$ jets

Jet suppression, enhanced dijet asymmetries, γ,Z^0-tagged jets
Status of in-medium modification in DIS
Jets and heavy flavor physics is **seriously underdeveloped**. Realized by EIC working group.

- The two topics mentioned are: (1) the possibility of hadronization in nuclei and (2) energy loss in nuclear matter. Circa 2000 physics.
A model based on pre-hadron and hadron formation times can provide some insight in the particle species dependence of the attenuation. Formation times might be underestimated.

\[R^h_A(z, \nu) = \left(\frac{N^h(z, \nu)}{N^e(\nu)} \right)_{A} / \left(\frac{N^h(z, \nu)}{N^e(\nu)} \right)_{D} \]
Semi-inclusive hadron suppression

- Energy loss-based approach compared to Hermes data

\[
R_A^h(z, \nu) = \left(\frac{N^h(z, \nu)}{N^e(\nu)} |_A \right) \left/ \left(\frac{N^h(z, \nu)}{N^e(\nu)} |_D \right) \right.
= \left(\frac{\Sigma e_q^2 q(x) \tilde{D}_q^h(z)}{\Sigma e_q^2 q(x)} |_A \right) \left/ \left(\frac{\Sigma e_q^2 q(x) D_q^h(z)}{\Sigma e_q^2 q(x)} |_D \right) \right.
\]

- \(\hat{q} \) obtained 0.7 GeV²/fm (very large, typical of infinite media approaches)

F. Arleo et al. (2003)
Using E-loss Calculations

N. Chang et al. (2014)

\[
\tilde{D}_{h/g}(z, Q_0^2) = \int_0^1 d\varepsilon P_g(\varepsilon, Q_0^2) \frac{1}{1-\varepsilon} \tilde{D}_{h/g}(\frac{z}{1-\varepsilon}, Q_0^2) \\
+ \int_0^1 d\varepsilon G^g(\varepsilon, Q_0^2) \frac{1}{\varepsilon} \tilde{D}_{h/g}(\frac{z}{\varepsilon}, Q_0^2),
\]

\[
\tilde{D}_{h/q}(z, Q_0^2) = \int_0^1 d\varepsilon P_q(\varepsilon, Q_0^2) \frac{1}{1-\varepsilon} \tilde{D}_{h/q}(\frac{z}{1-\varepsilon}, Q_0^2) \\
+ \int_0^1 d\varepsilon G^g(\varepsilon, Q_0^2) \frac{1}{\varepsilon} \tilde{D}_{h/q}(\frac{z}{\varepsilon}, Q_0^2).
\]

Energy loss modified functions used as initial conditions for evolution

- A quite small \(\hat{q} = 0.02 \text{ GeV}^2 / \text{fm}\). Again factor of 30 discrepancy in the transport properties of cold nuclear matter
- Serious unresolved discrepancies in the extraction of transport properties of large nuclei. Especially in this area – circa 2000 physics

- Stopping power of matter for charged particles is a fundamental probe of its properties

In QED $X_0(\text{min}) \sim \text{mm}$, in nuclei 10 orders of magnitude smaller!

- A whole class of new observables is missing – jets and jet substructure
- The measurements and theory can only be done at the EIC
Status of in-medium radiative corrections

"I think you should be more explicit here in step two."
Infinite medium approaches

- The infinitely thick medium approaches – they simplify the problem to resum the interactions

Realistic QGP (or nuclei for that matter) - $q \sim 2.5$ scatterings, $g \sim 5$.

- Known asymptotic limits are not recovered since initial and final state radiation is missed
- If phenomenologically applied, leads to an order of magnitude too large transport parameters for nuclear matter

M. Gyulassy et al. (1993)

R. Baier et al. (1996)

X. Feal et al. (2018)

What will be really useful to see if those diagrams can be added still in in some semi analytic fashion
Thin and finite media

- Finite opacity approaches – builds expansion in the correlation between the scattering centers (called opacity expansion)

- Result for soft gluon emission to any order in opacity

\[
x \frac{dN^{(n)}}{dx d^2k} = \frac{C_R \alpha_s}{\pi^2} \frac{1}{n!} \left(\frac{L}{\lambda_g(1)} \right)^n \int \prod_{i=1}^{n} \left\{ dq_i \left(\frac{\lambda_g(1)}{\lambda_g(i)} \right) \left(\bar{\nu}_i^2(q_i) - \delta^2(q_i) \right) \right\} \\
\times \left\{ -2 C_{(1,\ldots,n)} \sum_{m=1}^{n} B_{(m+1,\ldots,n)(m,\ldots,n)} \left(\cos \left(\sum_{k=2}^{m} \omega_{(k,\ldots,n)} \Delta z_k \right) - \cos \left(\sum_{k=1}^{m} \omega_{(k,\ldots,n)} \Delta z_k \right) \right) \right\}
\]

We can: (1) study the expansion order by order; (2) look at media of finite and small lengths; (3) take various analytic limits and obtain the results

- M. Gyulassy et al. (2000)
- X. Guo et al. (2001)
- I. Vitev (2007)
Full in medium splitting

- Full massless and massive in-medium splitting functions now available to first order in opacity

 G. Ovanesyan et al. (2011)

- SCET-based effective theories created to solve this problem

 F. Ringer et al. (2016)

Representative example

\[
\frac{dN^{\text{med}}}{d^2p_T B_\perp} \bigg|_{Q^2 \to Q_0} = \frac{\alpha_s}{2\pi^2} C_F \int \frac{d\Delta z}{\lambda_g(z)} \int d^2q_\perp \frac{1}{\sigma_{\text{el}}} \frac{d\sigma^{\text{med}}}{d^2q_\perp} \left\{ \frac{1+(1-x)^2}{x} \right\} \left[\frac{B_1}{B_1^2 + \nu^2} \right. \\
\times \left(\frac{B_1}{B_1^2 + \nu^2} - \frac{C_1}{C_1^2 + \nu^2} \right) (1 - \cos[(\Omega_1 - \Omega_2)\Delta z]) + \frac{C_1}{C_1^2 + \nu^2} \cdot \left(\frac{2}{C_1^2 + \nu^2} - \frac{A_1}{A_1^2 + \nu^2} \right) \\
\left. + \frac{1}{N_c^2} \frac{B_1}{B_1^2 + \nu^2} \cdot \left(\frac{A_1}{A_1^2 + \nu^2} - \frac{B_1}{B_1^2 + \nu^2} \right) (1 - \cos[(\Omega_1 - \Omega_2)\Delta z]) \right\}
\]

- For the first time we were able to do is higher order and resummed calculations

 Z. Kang et al. (2015)
Practically all phenomenology is done to first order in opacity. What are the higher order in opacity corrections?

The calculation was done using schematic geometry, no expansion. Qualitative guidance

The opacity series converges quite fast for \(L/\lambda \) up to 5 - 6 scatterings. Converges faster at higher energies

For integral quantities like energy loss the correction is as low as 10%. Hence the very good phenomenology

For more differential quantities – intensity, angular spectra – 30 – 50 %

It was also done to higher orders in opacity (~9) in the soft gluon emission limit

M. Gyulassy et al. (2000)

S. Wicks (2009)
Theoretical framework

- The theoretical framework is completely general – it is applicable for both cold nuclear matter and the QGP.
- This is achieved by isolating the medium in transport parameters and universal gluon-mediated interactions.

\[\mathcal{L}_{\text{opac.}} = \mathcal{L}_{\text{QCD}} + \mathcal{L}^q_{\text{ext}} + \mathcal{L}^g_{\text{ext}} + \mathcal{L}_{\text{G.F.}} + \cdots \]

\[v(q^2_T) \rightarrow \frac{-g_{\text{eff}}^2}{q^2_T + \mu^2} \quad \frac{d\sigma^{\text{el}}}{dq} = \frac{1}{(2\pi)^2} \frac{C_F}{2N_c} [v(q^2_T)]^2 \]

In deep inelastic scattering (DIS) the lowest order processes involve prompt quark. Even at NLO the prompt gluon jet contribution is small.

The limit we are interested in
- We neglect collisional energy losses.

F. Ringer et al. (2018)
The technique of lightcone wavefunctions

\[\psi(x, k - xp) = \frac{1}{2p^+} \frac{1}{p^- - (p - k)^- - k^-} U_\sigma(p - k) \left[-g f_\lambda^+(k)^\dagger U_{\sigma'}(p)\right] \]

\[= \frac{g x(1 - x)}{(k - xp)^2 + x^2 m^2} \left\{ \frac{2 - x}{x \sqrt{1 - x}} (\epsilon_\lambda^x \cdot (k - xp)) \left[1 \right]_{\sigma \sigma'} + \frac{\lambda}{\sqrt{1 - x}} (\epsilon_\lambda^x \cdot (k - xp)) \left[\tau_3 \right]_{\sigma \sigma'} \right. \]

\[+ \left. \frac{im x}{\sqrt{1 - x}} \epsilon_\lambda^x \times [\tau_\perp]_{\sigma \sigma'} \right\} \]

Useful to express in Pauli matrixes

\[\langle \psi(x, \kappa) \psi^*(x, \kappa') \rangle \equiv \sum_{\lambda = \pm 1} \frac{1}{2} \text{tr} \left[\psi(x, \kappa) \psi^*(x, \kappa') \right] \]

\[= \frac{8\pi \alpha_s (1 - x)}{[\kappa_T^2 + x^2 m^2]^2} \left[(\kappa \cdot \kappa') \left[1 + (1 - x)^2 \right] + x^4 m^2 \right] \]

\[\text{c.f.} \quad \text{F. Ringer et al. (2016)} \]

Branchings depending on the intrinsic momentum of the splitting \(\kappa = k - xp \)

\[\left. \frac{dN}{d^2k \, dx \, d^2p \, dp^+} \right|_{\mathcal{O}(\chi^0)} = \frac{\alpha_s C_F}{2\pi^2} \frac{(k - xp)^2}{[(k - xp)^2 + x^2 m^2]^2} \left[1 + (1 - x)^2 \right] + x^4 m^2 \times \left(p^+ \frac{dN_0}{d^2p \, dp^+} \right) \]

- Certain advantages – can provide in “one shot” both massive and massless splitting functions
- Have checked that results agree for massless and massive DGLAP splittings
Interaction in the amplitude and the conjugate amplitude (Direct or single Born diagrams)

- Propagators hide in the wavefunctions

\[D_4 = \left[\frac{-1}{2N_c C_F} e^{+i[\Delta E^-(k-xp) - \Delta E^-(k-xp+xq)]z^+} \psi(x, \kappa - xp) \left[0 - e^{-i\Delta E^-(k-xp)z^+} \right] \right] \times \left[e^{+i\Delta E^-(k-xp+xq)z^+} - e^{+i\Delta E^-(k-xp+xq)x^+_0} \right] \psi^*(x, \kappa - xp + xq) , \]

- Vitruvallity changes enter the interference phases and are related to the propagators

\[p^- - k^- - (p-k)^- = \Delta E^- (k-xp) \]
Opacity expansion building blocks – virtual terms

- A more interesting diagram - Double born can contribute to virtuality changes

\[V_8 = \left[\frac{N_c}{2C_F} e^{i[\Delta E^- (k-xp) - \Delta E^- (k-xp-q)]z^+} \right] \psi(x, k - xp) \left[0 - e^{-i\Delta E^- (k-xp)x_0^+} \right] \]
\[\times \left[e^{+i\Delta E^- (k-xp-q)x_0^+} - e^{+i\Delta E^- (k-xp-q)x_0^+} \right] \psi^*(x, k - xp - q). \]

- Interaction in the amplitude or the conjugate amplitude (Virtual or double Born diagrams)

Agree with the full splitting functions of
- G. Ovanesyan et al. (2011)
- F. Ringer et al. (2016)

And energy loss of
- M. Gyulassy et al. (2001)
Parton branching to any order in opacity

- Treating color (one complication in QCD).

 Color is not entangled, homogeneous structure and multiplicative factors that can be algebraically treated.

 Finally, relative to the splitting vertex we classify the as

 Initial/Initial, Initial/Final, Final/Initial and Final/Final

\[
C_1 = \frac{1}{N_c C_F} \text{tr}[t^b t^b t^a M^a] = c_0, \\
C_2 = \frac{1}{N_c C_F} f^{acb} f^{cdb} \text{tr}[t^a M^d] = -\frac{N_c}{C_F} c_0, \\
C_3 = \frac{1}{N_c C_F} f^{acb} \text{tr}[t^b t^c M^a] = \frac{i N_c}{2 C_F} c_0, \\
C_4 = \frac{1}{N_c C_F} \text{tr}[t^a t^b t^b M^a] = c_0, \\
C_5 = \frac{1}{N_c C_F} \text{tr}[t^b t^b t^a M^a] = -\frac{1}{2 N_c C_F} c_0, \\
C_6 = \frac{1}{N_c C_F} f^{acb} \text{tr}[t^a t^b M^c] = -\frac{i N_c}{2 C_F} c_0.
\]
Upper triangular structure. Suggests specific strategy how to solve it. Calculated: initial conditions, kernels, and wrote a Mathematica code to solve it.

Simplest kernel

\[\mathcal{K}_9 = \left[e^{-q \cdot \nabla_p} e^{+(z^+ - x^+)} \partial_{x^+} + e^{+(z^+ - y^+)} \partial_{y^+} \right] + \left[-\frac{1}{2} \right] \left[e^{+(z^+ - x^+)} \partial_{x^+} + e^{+(z^+ - y^+)} \partial_{y^+} \right] \]

Most complicated kernel

\[\mathcal{K}_1 = \left[e^{i[\Delta E^-(k-xp+xq)-\Delta E^-(k-xp)]} e^{i[\Delta E^-(k'-xp) - \Delta E^-(k'-xp+xq)]} e^{-q \cdot \nabla_p} e^{+(z^+ - x^+)} \partial_{x^+} + e^{+(z^+ - y^+)} \partial_{y^+} \right] \]

\[+ \left[\frac{N_c}{C_F} e^{i[\Delta E^-(k-xp-(1-x)q) - \Delta E^-(k-xp)]} e^{i[\Delta E^-(k'-xp) - \Delta E^-(k'-xp-(1-x)q)]} \right] \times \left[e^{-q \cdot \nabla_k} e^{-q \cdot \nabla_{k'}} e^{-q \cdot \nabla_p} e^{+(z^+ - x^+)} \partial_{x^+} + e^{+(z^+ - y^+)} \partial_{y^+} \right] \]
Present the first exact result to this order (including the ability to discuss broad or narrow sources)

\[xp^+ \frac{dN}{d^2k \, dx \, d^2p \, dp^+} \bigg|_{O(\chi^2)} = \frac{C_F}{2(2\pi)^3(1-x)} \int_{x_0^+}^{R^+} \frac{dz_2^+}{\lambda^+} \int_{x_0^+}^{z_2^+} \frac{dz_1^+}{\lambda^+} \int \frac{d^2q_1}{\sigma_{el}} \frac{d^2q_2}{\sigma_{el}} \frac{d\sigma^{el}}{d^2q_1 \, d^2q_2} \times \left\{ \left(p^+ \frac{dN_0}{d^2p \, dp^+} \right) N_1 + \left(p^+ \frac{dN_0}{d^2(p-q_1) \, dp^+} \right) N_2 + \left(p^+ \frac{dN_0}{d^2(p-q_2) \, dp^+} \right) N_3 + \left(p^+ \frac{dN_0}{d^2(p-q_1-q_2) \, dp^+} \right) N_4 \right\} \]

\[N_1 = \]

\[|\psi(k-xp)|^2 \left[\frac{(C_F + N_c)^2}{C_F} - \frac{N_c(C_F + N_c)}{C_F} \cos(\delta z_1 \Delta E^-(k-xp)) + \frac{N_c^2}{2C_F} \cos(\delta z_2 \Delta E^-(k-xp)) \right] \]

\[\left. - \frac{N_c(2C_F + N_c)}{2C_F} \cos((\delta z_1 + \delta z_2)\Delta E^-(k-xp)) \right] \]

For broad sources and in the soft gluon limit we have checked that the result reduces to the GLV second order in opacity.
Generalizing the result to all in-medium splittings (4)

- Note – all splittings have the same topology.
 - **Same** - structure, interference phases, propagators
 - **Different** - mass dependence, wavefunctions, color (which also affects transport coefficients)

\[\langle \psi(x, \kappa) \psi^*(x, \kappa') \rangle = \frac{8\pi\alpha_s f(x)}{[\kappa_T^2 + \nu^2 m^2][\kappa'_T^2 + \nu^2 m^2]} \left[g(x) (\kappa \cdot \kappa') + \nu^4 m^2 \right] \]

- Master table that gives all ingredients

<table>
<thead>
<tr>
<th></th>
<th>(d_2)</th>
<th>(d_3)</th>
<th>(d_4)</th>
<th>(d_5)</th>
<th>(d_6)</th>
<th>(v_1)</th>
<th>(v_2)</th>
<th>(v_5)</th>
<th>(v_7)</th>
<th>(\lambda^+_R)</th>
<th>(C_0)</th>
<th>(\nu)</th>
<th>(f(x))</th>
<th>(g(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G/q)</td>
<td>1</td>
<td>1</td>
<td>(\frac{1}{2}N_c)</td>
<td>(\frac{1}{2}C_F)</td>
<td>(-\frac{1}{2}C_F)</td>
<td>(-\frac{1}{2}N_c)</td>
<td>(-\frac{1}{2}N_c)</td>
<td>(-\frac{1}{2}C_F)</td>
<td>(-\frac{1}{2}C_F)</td>
<td>(\lambda^+_q)</td>
<td>(C_F)</td>
<td>(x)</td>
<td>(1 - x)</td>
<td>(1 + (1 - x)^2)</td>
</tr>
<tr>
<td>(q/q)</td>
<td>1</td>
<td>1</td>
<td>(\frac{1}{2}N_c)</td>
<td>(\frac{1}{2}C_F)</td>
<td>(-\frac{1}{2}C_F)</td>
<td>(-\frac{1}{2}N_c)</td>
<td>(-\frac{1}{2}N_c)</td>
<td>(-\frac{1}{2}C_F)</td>
<td>(-\frac{1}{2}C_F)</td>
<td>(\lambda^+_q)</td>
<td>(C_F)</td>
<td>(1 - x)</td>
<td>(x)</td>
<td>(1 + x^2)</td>
</tr>
<tr>
<td>(q/G)</td>
<td>(\frac{1}{2}C_F)</td>
<td>(\frac{1}{2}C_F)</td>
<td>(\frac{1}{2}N_c)</td>
<td>(\frac{1}{2}N_c)</td>
<td>(-\frac{1}{2}N_c)</td>
<td>(-\frac{1}{2}C_F)</td>
<td>(-\frac{1}{2}N_c)</td>
<td>(-\frac{1}{2}C_F)</td>
<td>(-\frac{1}{2}C_F)</td>
<td>(\lambda^+_G)</td>
<td>(\frac{1}{2}N_c)</td>
<td>(1)</td>
<td>(x(1 - x))</td>
<td>(x^2 + (1 - x)^2)</td>
</tr>
<tr>
<td>(G/G)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>(\lambda^+_G)</td>
<td>(N_c)</td>
<td>0</td>
<td>(1 + x^4 + (1 - x)^4)</td>
<td>1</td>
</tr>
</tbody>
</table>

We have now solved the problem for all splitting functions and are working on the manuscript

M. Sievert et al. (2019)
Numerical results

"I'm firmly convinced that behind every great man is a great computer."
For immediate application

- Numerics can be challenging due to lengthy equations and multi-dimensional integration

- Implementation for the case of QGP (simplified Bjorken expansion)

Lashoff-Regas et al. (2014)

- Still, code needed 3 days for a set of splittings

iEBE-VISHNU package

- Hydro + hadron cascade simulator for relativistic heavy-ion collisions
- Developed by Chun Shen and collaborators
Improvements in physics

- (2+1)D viscous hydrodynamics
- Incorporate modern equations-of-state (e.g. the HotQCD EoS)

Significant difference found in the splitting functions on model vs hydro simulation QGP medium

Code takes 6 times more time
Refactoring

- Code is **restructured** (in C++) and shortened (24K → 8K lines). **20x speed improvement**

Effective incorporation of simulated QGP medium

- Reduced overhead for calling QGP medium grid function. **2x speed improvement**

Efficient on-node parallelization

- New parallelization shows much better scaling. **10x speed improvement**

Overall improvement:

18 days → 1 hour
The more accurate splitting functions have been implemented in phenomenology. They have been measured directly measured by experiment

$$z_g = \frac{\min(p_{T1}, p_{T2})}{p_{T1} + p_{T2}} > z_{\text{cut}} \left(\frac{\Delta R_{12}}{R_0} \right)^\beta$$

H. Li et al. (2018)

Difficulties to second order in opacity

- Arise from larger number of evaluations – 10 pages; additional 3 dimensional integration
- Expect factor of ~ 10 slower. Still hope to get splitting function grids within a day

Porting to code

- Results are directly exported form Mathematica to C++
Note on notation in figures: LO – first order in opacity, NLO second order in opacity. What is labeled dN/dx is dN/dxd^2k_T at fixed k_T (3.3 GeV). The fully differential splitting functions where corrections are expected to be largest

- Preliminary results show $O(1\sim50\%)$ NLO corrections
- Evaluation of the NLO corrections is computationally very expensive

Boram Yoon et al. (2018)
Full QCD evolution approach

- Based on DGLAP evolution with with SCET_G medium-induced splitting kernels

\[
\frac{dD_{h/q}(z, Q)}{d \ln Q} = \frac{\alpha_s(Q)}{\pi} \int_z^1 \frac{dz'}{z'} \left[P_{q\rightarrow gg}^{\text{med}}(z', Q; \beta) D_{h/q} \left(\frac{z}{z'}, Q \right) + P_{g\rightarrow q\bar{q}}^{\text{med}}(z', Q; \beta) D_{h/g} \left(\frac{z}{z'}, Q \right) \right],
\]

\[
\frac{dD_{h/g}(z, Q)}{d \ln Q} = \frac{\alpha_s(Q)}{\pi} \int_z^1 \frac{dz'}{z'} \left[P_{g\rightarrow gg}^{\text{med}}(z', Q; \beta) D_{h/g} \left(\frac{z}{z'}, Q \right) + P_{g\rightarrow q\bar{q}}^{\text{med}}(z', Q; \beta) \sum_q D_{h/q} \left(\frac{z}{z'}, Q \right) \right].
\]

Z. Kang et al. (2014)

- The approach was shown to give good description

Did not fit HERMES data. Instead we used nuclear transport properties constrained form the Cronin effect, coherent power corrections, and initial-state energy loss

1) We looked directly at the modification of the fragmentation function – expect it to be larger that in Kr and Xe at HERMES

2) Form the transport properties of CNM (power corrections, CNM e-loss in DY): quarks $\xi^2 A^{1/3} \sim Q_s^2 \sim 0.7 \text{ GeV}^2$ gluons $\xi^2 A^{1/3} \sim Q_s^2 \sim 1.5 \text{ GeV}^2$
Validation against Hermes data

- Description of light pions. On the upper edge of the theory uncertainty bands.
- For heavy particle one has to be careful when \(E \sim m \).

NLO calculation

\[
E_h \frac{d^3 \sigma^{N \rightarrow hX}}{d^3 P_h} = \frac{1}{S} \sum_{i,f} \int_0^1 dx \int_0^1 \frac{dz}{z^2} f_i^{[N]}(x, \mu) \times D^{h/f}(z, \mu) \tilde{\sigma}^{i \rightarrow f}(s, t, u, \mu)
\]
Results for jet fragmentation at the EIC in E+A

- The distribution of hadrons inside jets: semi-inclusive fragmenting jet functions

\[\frac{d\sigma_{pp\rightarrow (jet\ h)X}}{dp_T d\eta d\xi_z} = \sum_{a,b,c} f_a(x_a, \mu) \otimes f_b(x_b, \mu) \otimes \]

\[H_{ab}^c(\eta, p_T / z, x_a, x_b, \mu) \otimes G_h^c(z, z_h, \omega, R, \mu) \]

- Derivation in the presence of a medium

\[G_q^{(1)}(z, z_h, \omega, R, \mu) = D_q(z_h) \left[\int_{z(1-z)p_T R}^{\mu_R} P_{qq}(z, q) \right]_+ + \delta(1-z) \left[\int_{\mu_0}^{z_h(1-z)p_T R} d\xi q_{qq}(z_h, q) \right]_+ \otimes D_q(z_h) \]

\[\xi = \ln(1/z) \]

Very preliminary EIC results

Do not observe the lepton

For “historic” reasons: \[\xi = \ln(1/z_h) \]
Tensions in the extraction of the strong coupling constant

- Develop precision theories for event shape observables in DIS.
- Constrain nucleon structure.
- Extract α_s
- 1 jettiness (1jet and 1 beam)

D. Kang et al. (2016)
There are tremendous opportunities for jet physics in ep and eA collisions that are not fully explored at the EIC.

On the experimental side one can determine the transport properties of large nuclei, radiation lengths that are the shortest in nature. A multi-year physics program.

On the formal side we now have the technique to calculate the full (beyond soft gluon emission) in-medium splitting functions to any order in opacity. Explicit results and numerical implementation.

We also have new theoretical techniques (some inspired by SCET) based on factorization and evolution, semi-inclusive jets functions, semi-inclusive fragmenting jet functions. Can validate against existing HERMES data, but the emphasis is on jet physics.

Working on numerical tools (implementation) for jet simulations in reactions with nuclei at the EIC.
We haven’t see transparency but we have seen quenching