First cross section results from e-Ar experiment at Jefferson Lab

Vishvas Pandey
(for the E12-14-012 collaboration at JLab)
Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061, USA

INT Program INT-18-1a, Nuclear ab initio Theories and Neutrino Physics, February 26 - March 30, 2018
Primary Goal: Measurement of the spectral functions of argon nucleus through (e,e’p) reaction
**Primary Goal:** Measurement of the spectral functions of argon nucleus through \((e,e'p)\) reaction

Why Argon?

- The short- (SBN program) and the long-baseline (DUNE) neutrino experiments (will) employ detectors based on the liquid-argon time-projection chambers (LArTPCs) technology. Apart from precision goal of oscillation parameter measurement \((\theta_{23})\), we are moving towards searching *CP violation in leptonic sector.*

**SBN Program at FNAL**

**DUNE**

- Event rate:

\[
N_{\alpha \to \beta}^{\alpha \beta}(p_{\text{reco}}) = \sum_i \phi_\alpha(E_{\text{true}}) \times P_{\alpha \beta}(E_{\text{true}}) \times \sigma_i^{\beta}(p_{\text{true}}) \times \epsilon_\beta(p_{\text{true}}) \times R_i(p_{\text{true}}, p_{\text{reco}}),
\]
E12-14-012 Experiment: In a nutshell

**Primary Goal:** Measurement of the spectral functions of argon nucleus through (e,e’p) reaction

### Why Argon?

- The short- (SBN program) and the long-baseline (DUNE) neutrino experiments (will) employ detectors based on the liquid-argon time-projection chambers (LArTPCs) technology. Apart from precision goal of oscillation parameter measurement ($\theta_{23}$), we are moving towards searching **CP violation in leptonic sector.**

- The lack of adequate modeling of neutrino-nucleus interactions and nuclear effects in Monte-Carlo simulations, has been recognized as the major source of systematic uncertainty even with the relatively well-know isospin symmetric nuclei such as $^{12}$C and $^{16}$O - pertinent for water Cherenkov and mineral-oil detectors.

- The magnitude of uncertainty is expected to rise significantly considering almost non-existence electron scattering studies on argon and hence no empirical testbed available to develop accurate models.

- Furthermore, a careful modeling of an isospin asymmetric nucleus, argon, is more vital in the test of CP violation considering neutrino and antineutrino may behold different nuclear effects on argon (because of different number of neutrons and protons).
**Primary Goal:** Measurement of the spectral functions of argon nucleus through (e,e’p) reaction

**Why Argon?**

- The only available e-Ar data is (e,e’) cross section measured at Frascati National Laboratory using the electron-positron collider ADONE and a jet target.
- To achieve the precision level required for the discovery of CP violation in lepton sector, clearly, more high precision e-Ar data is needed.

\[ E = 700 \text{ MeV}, \ \theta = 32 \text{ deg} \]

\[ \frac{d^2 \sigma}{dE d\omega} (\text{nb/MeV sr}) \]

\[ M. \ Anghinolfi \ et \ al., \ J. \ Phys. \ G21, \ L9 \ (1995) \]
E12-14-012 Experiment: In a nutshell

- **Primary Goal**: Measurement of the spectral functions of argon nucleus through (e,e’p) reaction

### Why Spectral Functions?

I. **Energy Reconstruction**: Measuring spectral functions of argon nucleus will provide the energy and momentum distribution of protons and neutrons bound in argon nucleus that will allow more accurate reconstruction of the incoming neutrino and antineutrino energies (which is currently the major source of uncertainty in these experiments).

Kinematic Energy Reconstruction for CCQE process:

\[
E_{\nu} = \frac{m_p^2 - m_{\mu}^2 - E_n^2 + 2E_{\mu}E_n - 2k_{\mu} \cdot p_n + |p_n|^2}{2(E_n - E_{\mu} + |k_{\mu}| \cos \theta_{\mu} - |p_n| \cos \theta_n)}
\]

where $|k_{\mu}|$ and $\theta_{\mu}$ are measured, while $p_n$ and $E_n$ are the unknown momentum and energy of the interacting neutron that can be measured at E12-14-012 experiment.
**E12-14-012 Experiment: In a nutshell**

- **Primary Goal**: Measurement of the spectral functions of argon nucleus through (e,e’p) reaction

**Why Spectral Functions?**

II. **Nuclear Model**: The measured argon spectral functions will provide vital input to the theoretical model based on the factorization ansatz dictated by the impulse approximation and spectral function formalism [Benhar et al.].

The approach which has been successful in describing inclusive electron-scattering data in a variety of kinematical regimes.

And has been extended to the analysis of neutrino scattering.


E12-14-012 Experiment: In a nutshell

- **Primary Goal**: Measurement of the spectral functions of argon nucleus through (e,e’p) reaction

- Nevertheless, a new high precision e-Ar data will provide vital information about argon nucleus and it’s electroweak interaction to the community that can be used as a testbed for the development of theoretical models/frameworks. And will be a significant step ahead in improving the accuracy of the measurement of the neutrino-oscillation parameters, more importantly the CP violation phase in leptonic sector.
We plan to study the **coincidence \((e,e'p)\) processes** in the **kinematical region** in which single nucleon knock out of a nucleon occupying a shell model orbit is the dominant reaction mechanism.
We plan to study the **coincidence** \((e,e'p)\) **processes** in the **kinematical region** in which single nucleon knock out of a nucleon occupying a shell model orbit is the dominant reaction mechanism.

**Coincidence \((e,e'p)\) process:**

- Both the outgoing electron and the proton are detected in coincidence, and the recoiling nucleus can be left in any bound state.

- Within the **Plane Wave Impulse Approximation (PWIA)** scheme:

\[
\frac{d\sigma_A}{dE_{e'}d\Omega_{e'}dE_p d\Omega_p} \propto \sigma_{ep} P(p_m, E_m)
\]

- The initial energy and momentum of the knocked out nucleon can be identified with the measured missing momentum and energy, respectively as

\[
p_m = p - q
\]

\[
E_m = \omega - T_p - T_{A-1} \sim \omega - T_p
\]

Where \(T_p = E_p - m\), is the kinetic energy of the outgoing proton.
Extracting Spectral Functions from Data

- We plan to study the **coincidence (e,e’p) processes** in the **kinematical region** in which single nucleon knock out of a nucleon occupying a shell model orbit is the dominant reaction mechanism.

### Kinematic region:

- Separation energies of the proton and neutron shell model states for Ca and Ar ground states

<table>
<thead>
<tr>
<th></th>
<th>protons</th>
<th></th>
<th>neutrons</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>⁴⁰Ca</td>
<td>⁴⁰Ar</td>
<td>⁴⁰Ca</td>
<td>⁴⁰Ar</td>
</tr>
<tr>
<td>1s₁/₂</td>
<td>57.38</td>
<td>52</td>
<td>66.12</td>
<td>62</td>
</tr>
<tr>
<td>1p₃/₂</td>
<td>36.52</td>
<td>32</td>
<td>43.80</td>
<td>40</td>
</tr>
<tr>
<td>1p₁/₂</td>
<td>31.62</td>
<td>28</td>
<td>39.12</td>
<td>35</td>
</tr>
<tr>
<td>1d₅/₂</td>
<td>14.95</td>
<td>11</td>
<td>22.48</td>
<td>18</td>
</tr>
<tr>
<td>2s₁/₂</td>
<td>10.67</td>
<td>8</td>
<td>17.53</td>
<td>13.15</td>
</tr>
<tr>
<td>1d₃/₂</td>
<td>8.88</td>
<td>6</td>
<td>15.79</td>
<td>11.45</td>
</tr>
<tr>
<td>1f₇/₂</td>
<td></td>
<td></td>
<td>5.56</td>
<td></td>
</tr>
</tbody>
</table>

- The energy distribution

\[ f(E) = 4\pi \int dk \, k^2 P(k, E) \]

- The momentum distribution

- Kinematic region for argon

\[ 6 \text{ MeV} \lesssim E_m \lesssim 60 \text{ MeV} \]

\[ p_m \lesssim 350 \text{ MeV} \]

Extracting Spectral Functions from Data

- We plan to study the **coincidence (e,e’p) processes** in the **kinematical region** in which single nucleon knock out of a nucleon occupying a shell model orbit is the dominant reaction mechanism.

- Cross section within the **Plane Wave Impulse Approximation (PWIA)** scheme:

  \[
  \frac{d\sigma_A}{dE_e' d\Omega_e' dE_p d\Omega_p} \propto \sigma_{ep} P(p_m, E_m)
  \]

- The spectral function extracted from the data will be

  \[
  P_{MF}(p_m, E_m) = \sum_\alpha Z_\alpha |\xi_\alpha(p_m)|^2 F_\alpha(E_m - E_\alpha)
  \]

  In the absence of correlations, \(Z_\alpha \rightarrow 1\), and \(F_\alpha(E_m - E_\alpha) \rightarrow \delta(E_m - E_\alpha)\).

- The correlation contribution to the spectral function of a finite nucleus of mass number \(A\) can be calculated within the Local Density Approximation (LDA):

  \[
  P_{\text{corr}}(p_m, E_m) = \int d^3r \, \rho_A(r) P_{\text{corr}}^N(p_m, E_m; \rho = \rho_A(r))
  \]

- In Kahlen-Lehman representation: the full LDA spectral function is given by the sum

  \[
  P(p_m, E_m) = P_{MF}(p_m, E_m) + P_{\text{corr}}(p_m, E_m)
  \]

  \[
  n(p_m) = \int dE \, P(p_m, E_m)
  \]

---

Superconducting magnets:
- large acceptance in both angle and momentum
- good resolution in position and angle

Detector Package:

Vertical Drift Chambers:
- collecting tracking information (position and direction)

Scintillators:
- trigger to activate the data-acquisition electronics
- precise timing information for time-of-flight measurements and coincidence determination

Cherenkov:
- The particle identification, obtained from a variety of Cherenkov type detectors (aerogel and gas) and lead-glass shower counters
<table>
<thead>
<tr>
<th><strong>HALL A Schematics</strong></th>
<th><strong>HALL A Characteristics</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam energy resolution</td>
<td>5 x10^{-4}</td>
</tr>
<tr>
<td>Momentum range</td>
<td>0.3 – 4.0 GeV/c</td>
</tr>
<tr>
<td>Momentum acceptance</td>
<td>-4.5% &lt; δp/p &lt; +4.5%</td>
</tr>
<tr>
<td>Momentum resolution</td>
<td>2 x10^{-4}</td>
</tr>
<tr>
<td>Angular range</td>
<td>HRS-L: 12.5° – 150°</td>
</tr>
<tr>
<td></td>
<td>HRS-R: 12.5° – 130°</td>
</tr>
<tr>
<td>Angular acceptance</td>
<td>Horizontal: ± 30 mrad</td>
</tr>
<tr>
<td></td>
<td>Vertical: ± 60 mrad</td>
</tr>
<tr>
<td>Angular resolution</td>
<td>Horizontal: 0.5 mrad</td>
</tr>
<tr>
<td></td>
<td>Vertical: 1.0 mrad</td>
</tr>
</tbody>
</table>

HRS: High Resolution Spectrometer
Why Titanium?

- The reconstruction of neutrino and antineutrino energy in liquid argon detectors will require the understanding of the spectral functions describing both neutrons and protons.

- Exploiting the correspondence of the level structures, the neutron spectral function of argon can be obtained from the proton spectral function of titanium.

\[
\nu_l + n \rightarrow l^- + p
\]

\[
\bar{\nu}_l + p \rightarrow l^+ + n
\]
Target setups

Ar Target
• Gas Cell
• Length = 25 cm
• Pressure = 500 PSI
• Temperature = 300 K.
• Target thickness = 1.381 g cm$^{-2}$
• Luminosity = $4.33 \times 10^{37}$ atoms cm$^{-2}$ sec$^{-1}$.
Target setups

Multiple foil:

- Dummy target: same as the entry and exit window as the gas target

Optical target: a series of foils of carbon (9) to check the alignment of target and spectrometers (optics)
Kinematic setups

Run Period: Feb-March 2017

|                | \(E_e\) | \(E_{e'}\) | \(\theta_e\) | \(P_p\) | \(\theta_p\) | \(|q|\) | \(p_m\) |
|----------------|---------|-----------|-------------|--------|-------------|-------|--------|
| \(E_e\) MeV   | \(E_{e'}\) MeV | \(\theta_e\) deg | \(P_p\) MeV/c | \(\theta_p\) deg | \(|q|\) MeV/c | \(p_m\) MeV/c |
| kin1           | 2222    | 1799      | 21.5        | 915    | -50.0       | 857.5 | 57.7   |
| kin3           | 2222    | 1799      | 17.5        | 915    | -47.0       | 740.9 | 174.1  |
| kin4           | 2222    | 1799      | 15.5        | 915    | -44.5       | 658.5 | 229.7  |
| kin5           | 2222    | 1716      | 15.5        | 1030   | -39.0       | 730.3 | 299.7  |
| inc-kin5       | 2222    | -         | 15.5        | -      | -           | 730.3 | 299.7  |

<table>
<thead>
<tr>
<th>kin1</th>
<th>Collected Data</th>
<th>Hours</th>
<th>Events (k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar</td>
<td>29.6</td>
<td>43955</td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>12.5</td>
<td>12755</td>
<td></td>
</tr>
<tr>
<td>Dummy</td>
<td>0.75</td>
<td>955</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>kin3</th>
<th>Collected Data</th>
<th>Hours</th>
<th>Events (k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar</td>
<td>13.5</td>
<td>73176</td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>8.6</td>
<td>28423</td>
<td></td>
</tr>
<tr>
<td>Dummy</td>
<td>0.6</td>
<td>2948</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>kin2</th>
<th>Collected Data</th>
<th>Hours</th>
<th>Events (k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar</td>
<td>32.1</td>
<td>62981</td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>18.7</td>
<td>21486</td>
<td></td>
</tr>
<tr>
<td>Dummy</td>
<td>4.3</td>
<td>5075</td>
<td></td>
</tr>
<tr>
<td>Optics</td>
<td>1.15</td>
<td>1245</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2.0</td>
<td>2318</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>kin4</th>
<th>Collected Data</th>
<th>Hours</th>
<th>Events (k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar</td>
<td>30.9</td>
<td>158682</td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>23.8</td>
<td>113130</td>
<td></td>
</tr>
<tr>
<td>Dummy</td>
<td>7.1</td>
<td>38591</td>
<td></td>
</tr>
<tr>
<td>Optics</td>
<td>0.9</td>
<td>4883</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>3.6</td>
<td>21922</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>kin5</th>
<th>Collected Data</th>
<th>Hours</th>
<th>Events (k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar</td>
<td>12.6</td>
<td>45338</td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>1.5</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>Dummy</td>
<td>5.9</td>
<td>16286</td>
<td></td>
</tr>
<tr>
<td>Optics</td>
<td>2.9</td>
<td>160</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>kin5 - Inclusive</th>
<th>Collected Data</th>
<th>Minutes</th>
<th>Events (k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar</td>
<td>57</td>
<td>2928</td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>50</td>
<td>2993</td>
<td></td>
</tr>
<tr>
<td>Dummy</td>
<td>56</td>
<td>3235</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>115</td>
<td>3957</td>
<td></td>
</tr>
</tbody>
</table>
## Kinematic setups

|      | $E_e$ | $E_{e'}$ | $\theta_e$ | $P_p$ | $\theta_p$ | $|q|$ | $p_m$ |
|------|------|--------|---------|------|---------|------|------|
|      | MeV  | MeV    | deg     | MeV/c | deg     | MeV/c | MeV/c |
| kin1 | 2222 | 1799   | 21.5    | 915   | -50.0   | 857.5 | 57.7  |
| kin3 | 2222 | 1799   | 17.5    | 915   | -47.0   | 740.9 | 174.1 |
| kin4 | 2222 | 1799   | 15.5    | 915   | -44.5   | 658.5 | 229.7 |
| kin5 | 2222 | 1716   | 15.5    | 1030  | -39.0   | 730.3 | 299.7 |
| kin2 | 2222 | 1716   | 20.0    | 1030  | -44.0   | 846.1 | 183.9 |
| inc-kin5 | 2222 | -      | 15.5    | -     | -       | 730.3 | 299.7 |

### Run Period: Feb-March 2017

**kin1**

<table>
<thead>
<tr>
<th>Collected Data</th>
<th>Hours</th>
<th>Events(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar</td>
<td>29.6</td>
<td>43955</td>
</tr>
<tr>
<td>Ti</td>
<td>12.5</td>
<td>12755</td>
</tr>
<tr>
<td>Dummy</td>
<td>0.75</td>
<td>955</td>
</tr>
</tbody>
</table>

**kin3**

<table>
<thead>
<tr>
<th>Collected Data</th>
<th>Hours</th>
<th>Events(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar</td>
<td>13.5</td>
<td>73176</td>
</tr>
<tr>
<td>Ti</td>
<td>8.6</td>
<td>28423</td>
</tr>
<tr>
<td>Dummy</td>
<td>0.6</td>
<td>2948</td>
</tr>
</tbody>
</table>

**kin2**

<table>
<thead>
<tr>
<th>Collected Data</th>
<th>Hours</th>
<th>Events(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar</td>
<td>32.1</td>
<td>62981</td>
</tr>
<tr>
<td>Ti</td>
<td>18.7</td>
<td>21486</td>
</tr>
<tr>
<td>Dummy</td>
<td>4.3</td>
<td>5075</td>
</tr>
<tr>
<td>Optics</td>
<td>1.15</td>
<td>1245</td>
</tr>
<tr>
<td>C</td>
<td>2.0</td>
<td>2318</td>
</tr>
</tbody>
</table>

**kin4**

<table>
<thead>
<tr>
<th>Collected Data</th>
<th>Hours</th>
<th>Events(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar</td>
<td>30.9</td>
<td>158682</td>
</tr>
<tr>
<td>Ti</td>
<td>23.8</td>
<td>113130</td>
</tr>
<tr>
<td>Dummy</td>
<td>7.1</td>
<td>38591</td>
</tr>
<tr>
<td>Optics</td>
<td>0.9</td>
<td>4883</td>
</tr>
<tr>
<td>C</td>
<td>3.6</td>
<td>21922</td>
</tr>
</tbody>
</table>

**kin5 - Inclusive**

<table>
<thead>
<tr>
<th>Collected Data</th>
<th>Minutes</th>
<th>Events(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar</td>
<td>57</td>
<td>2928</td>
</tr>
<tr>
<td>Ti</td>
<td>50</td>
<td>2993</td>
</tr>
<tr>
<td>Dummy</td>
<td>56</td>
<td>3235</td>
</tr>
<tr>
<td>C</td>
<td>115</td>
<td>3957</td>
</tr>
</tbody>
</table>
**C(e,e’)** Analysis: Analysis is mainly performed by graduate students - Hongxia Dai (VTech), Matt Murphy (VTech), and Daniel Abrams (UVA).

- **Particle Identification and Electron Selection**

  - **Cerenkov cut:** cer > 400
  - **Calorimeter cut:** E/p > 0.3

- **Charge symmetric background**
  - e⁻ from pair production caused by different processes – negligible contamination.

- **Pion contamination**
  - Negligible
Non-zero track ratio: \( R_1 \)
- Cut1: Trigger, PID cut
- \( R_1 = \frac{N_{\text{track}>0}}{N_{\text{sample1}}} \)
- One track ratio: \( R_2 \)
- Cut2: Trigger, PID cut, acceptance cut
- \( R_2 = \frac{N_{\text{track}=1 \& \gamma \text{within } 5\sigma}}{N_{\text{sample2}}} \)
- Efficiency = \( R_1 \cdot R_2 \approx 95\% \)

**VDC efficiency**

**Trigger Efficiency**
- Production trigger: \( T_3: (S0 \& S2) \& (GC \| PR) \) [LEFT]
- Efficiency trigger: \( T_5: (S0 \| S2) \& (GC \| PR) \) [LEFT]
- Selected Sample
  - \( T_5 \)
  - Single track cut
  - Acceptance Cuts
  - PID Cuts
  - Efficiency = \( \frac{\# \text{events with signal on both } S0 \text{ and } S2}{\# \text{sample events}} \approx 99.9\% \)

**Calorimeter cut efficiency**
- Set cut as \( E/p_0 > 0.3 \)
- Select Sample events
  - \( T_3 (S0 \& S2) \& (GC \| PR) \)
  - Single track
  - Acceptance cuts
  - Cerenkov cut
  - \( \epsilon = \frac{\# \text{events with } E/p_0>0.3}{\# \text{sample events}} \)
  - Efficiency ~ 99.9\%

**Cerenkov cut efficiency**
- Negligible pion contamination, cer cut at 400
- Select Sample events
  - \( T_3 (S0 \& S2) \& (GC \| PR) \)
  - Single track
  - Acceptance cuts
  - Cerenkov cut
  - \( \epsilon = \frac{\# \text{events with cer}>400}{\# \text{sample events}} \approx 99.9\% \)
Inclusive cross section extraction:

- **Yield ratio method:**

For $i^{th}$ bin:

$$
\sigma_{data}^i = \sigma_{model}^i \frac{Y_{data}^i(E', \theta)}{Y_{MC}^i(E', \theta)}
$$

Where,

$$
Y_{data}^i = \frac{N_s^i \times \text{prescale}}{N_e \times \text{(live time)} \times \epsilon_{eff}}
$$

$N_s^i$ : Number of scattered electrons

$N_e$ : Total number of electrons in the beam

$\epsilon_{eff}$ : Total efficiency
### $C(e,e')$ cross section:

- The carbon data allowed us to study systematics and to compare our measurements with the previous experiments.

- Error bars up to $\sim 2.5\%$, corresponding to the statistical (1.2\%) and systematic (2.2\%) uncertainties summed in quadrature.

- **Theoretical** calculations [Benhar et al.] are based on the factorization ansatz dictated by the impulse approximation (IA) and the spectral function formalism. The approach does not involve any adjustable parameters, and allows for a consistent inclusion of single-nucleon interactions—both elastic and inelastic—and meson-exchange current (MEC) contributions.
**C(e,e’) measurements in comparison to previous data**

- The \( y \)-scaling function, \( F(y) \), obtained from the cross section measured by the E12-14-012 experiment to those obtained from the previous data spanning a kinematical range corresponding to \( 0.20 \leq Q^2 \leq 1.8 \text{ GeV}^2 \).

- At \( y \approx 0 \), the data exhibit a remarkable scaling behavior corresponding to \( \omega \approx Q^2/2M \).

- At large negative values of \( y \), a sizable scaling violations, to be mainly ascribed to FSI, are observed.

- The \( F(y) \) as a function of \( q \), at \( y = -0.2 \text{ GeV} \), demonstrates that in the kinematical setup of our experiment, corresponding to \( |q| \approx 600 \text{ MeV} \), the effects of FSI are still significant.

- Our results are fully consistent with those of previous experiments.

---

NEW RESULTS

---

**Ti(e,e’) Analysis:**

- We used the same definitions and cuts as in carbon [*note: both measurements are performed at the same kinematics*]

- In the absence of any previous electron-scattering studies carried out using a titanium target (no MC model), we determine the Ti(e,e’) cross section using:

\[
\frac{d^2 \sigma_{\text{Born}}}{d\Omega dE'}^i_{\text{Ti}} = \left( \frac{d^2 \sigma_{\text{Born}}}{d\Omega dE'} \right)^i_C \times \frac{\text{Yield}^i_{\text{Ti}}}{\text{Yield}^i_C}
\]

- In this approach, most of the systematic uncertainties are fully correlated between C and Ti, due to the fact that the data was collected in the same kinematical setup and analyzed using the same cuts of the carbon data.
**Ti(e,e’) cross section:**

- The first electron-scattering data ever collected on titanium target.

- Error bars up to ~ 2.75%, corresponding to the statistical (1.65%) and systematic (2.2%) uncertainties summed in quadrature.
Comparing Ti(e,e') and C(e,e') cross sections:

\[ \frac{d^2 \sigma}{d\Omega dE'} / \left[ Z \sigma_{ep} + (A - Z) \sigma_{en} \right] \]

- The quantities \( \sigma_{ep} \) and \( \sigma_{en} \) are the elementary electron-proton and electron-neutron cross sections in the QE channel stripped of the energy-conserving delta function.

- The difference between the results obtained using the measured carbon and titanium cross sections reflect different nuclear effects.
- **Scaling of second kind:**

  - The difference between C and Ti cross sections, which reflect different nuclear effects, can be conveniently parametrized in terms of a nuclear Fermi momentum exploiting the concept of superscaling.
Summary

- The progress in accelerator-based neutrino-oscillation experimental program, and the search for CP violation in leptonic sector is substantially challenged by the lack of precise understanding of the neutrino-nucleus signal in the detector resulting into high systematic uncertainties.

- The challenges are magnified with the use of liquid Argon TPC [LArTPC] (in the SBN program leading to DUNE) with almost non-existent knowledge of the electroweak response of the $^{40}$Ar.

- JLab Ar-Ti (e,e’p) experiment (E12-14-012) took data successfully in 2017.

- The first results, consisting of the Ti(e,e’) and C(e,e’) cross sections at beam energy E = 2.222 GeV and scattering angle $\theta$ =15.541 deg with uncertainties < 2.75%, are presented and will be available online this week.

- Our measurement, providing the first experimental information ever on electron-titanium scattering, will be of great value for the development of realistic models of the electroweak response of neutron-rich nuclei.

- Stay tuned for our first argon results - Ar(e,e’) cross section – this summer!
Back-up
Inclusion of Final State Interactions

- The Distorted Wave Impulse Approximation (DWIA), obtained from a complex potential fitted to proton-nucleus scattering data.

- The real part of the optical potential shifts the momentum distribution of the shell model states by an amount \( \Delta p \), while inclusion of the imaginary part leads to a significant reduction of the PWIA result, typically by a factor \( Z \sim 0.7 \).
FG model: \( P(p, E) \propto \theta(p_F - |p|) \delta(E - \sqrt{|p|^2 + m^2 + \epsilon}) \)

shell model states account for \( \sim 80\% \) of the strength

the remaining \( \sim 20\% \), arising from NN correlations, is located at high momentum \textit{and} large removal energy \(|p| \gg p_F \sim 220 \text{ MeV}, E \gg \epsilon\)
Kinematic setups

![Graphs showing kinematic setups with Gaussian fitting formulas and distribution functions.]

- Gaussian Fitting Fns.
  - $0.00509 \pm 0.00082$
  - $0.00843 \pm 0.00153$
  - $0.01115 \pm 0.00114$

- Gaussian Fitting Fns.
  - $0.01095 \pm 0.00163$
  - $0.03099 \pm 0.00421$
  - $0.05282 \pm 0.00676$