Neutron reflection from fluorinated nanodiamonds for N-Nbar

- Introduction to nano-diamond neutron reflectors
- The problem of hydrogen impurities
- The impact of hydrogen substitution by fluor
- Conclusions and prospects
Introduction to nano-diamond reflectors (broader than particle physics)

Complementarity of neutron and synchrotron radiation.

Neutron radiation: particularly light elements and magnetic structures; the object of research in particle physics – in this sense, complementary to high-energy particle accelerators; mostly sensitive to nuclei in atoms.

Synchrotron radiation: mostly sensitive to electrons in atoms.
Slow neutrons are traditionally subdivided into several groups as a function of their energy/velocity:

- **Cold neutrons (CNs):** a typical velocity 1000 m/s; you have a lot of CNs from all typical neutron sources (nuclear reactors and spallation neutron sources), if they are equipped, for instance, with a cold liquid-deuterium or liquid-hydrogen source;

- **Ultracold neutrons (UCNs):** a typical velocity 5 m/s; in spite of all worldwide efforts, extremely low densities available for experiments, however a unique property of total reflection from material and magnetic walls thus storage of UCNs in traps;

- **Very cold neutrons (VCNs):** a typical velocity 100 m/s; limited fluxes and no efficient reflectors ... until recently
Worldwide trend to increase the range of useful neutrons towards smaller energies (larger wavelengths), driven in particular by large-scale-structure diffractometers, reflectometers, time-of-flight and spin-echo techniques, by particle physics.

The progress is limited by low fluxes of slow neutrons (the wavelength larger than 0.5 nm, or the energy smaller than 3 meV).

The drop of flux is due to a fundamental reason: independently of the choice of materials for neutron reflectors, they are composed of atoms, thus a finite interatomic distance, thus diffraction and thus simply mean neutron-nuclei optical potential.

The solution of this problem: “Mimicking” conventional reflectors with nanoparticles.
Introduction to nano-diamond reflectors

Neutron-atom: the neutron-electron interaction is usually a minor correction compared to the neutron-nuclei interaction; **Neutron-nucleus:** as the wavelength of a slow neutron is larger than the size of a nucleus, we always deal with isotropic s-scattering and can characterize it with a single parameter: a scattering length; **Neutron-matter:** as the wavelength of a slow neutron is also larger than a typical inter-atomic distance, we deal with coherent scattering of neutrons at many nuclei simultaneously; **Optical potential:** as a result, any medium can be represented as a uniform effective optical potential; **Potential strength:** a typical value of the optical neutron-nuclei potential is $\sim 10^{-7}$ eV (could be thought of as a typical nuclear potential of ~ 10 MeV diluted over volume).

Two contradicting tendencies:

1) Cross-section increases rapidly as a function of the nanoparticle size; 2) Angular divergence and cross-section drop down rapidly, if the size is large.

1) The optimum neutron wavelength is approximately equal to the nanoparticle size; 2) The cross-section is then measured in square nanometers; 3) The best material is diamond.
The (elastic) reflection of VCNs from powder of diamond nanoparticles, the storage of VCNs in closed volumes with nano-powder walls, and quasi-specular reflection of cold neutrons (CNs) from diamond nano-powder have been proven.
The danger of hydrogen impurities

An important limitation for further improving the reflectivity consisted of the presence of hydrogen in the amorphous shells of diamond nanoparticles.

\[\sigma_{abs}^{C} = 3.5 \text{ mb} \quad \sigma_{abs}^{H} = 333 \text{ mb} \quad \sigma_{abs}^{F} = 9.6 \text{ mb} \]

\[b^{C} = 6.65 \text{ fm} \quad b^{H} = -3.74 \text{ fm} \quad b^{F} = 5.65 \text{ fm} \]

1% of mass but !! \[\sigma_{in.sc.}^{H} = 108(3) \text{ b} \]

We have explored three methods to remove hydrogen:
- Thermal treatment;
- Isotopic substitution;
- Chemical treatment.
Fluorination of nanodiamonds

An important limitation for further improving the reflectivity consisted of the presence of hydrogen in the amorphous shells of diamond nanoparticles.

As-prepared (detonation technology)

\[C_{7.4 \pm 0.15} H \]

After thermal treatment

\[C_{12.4 \pm 0.2} H \]

After fluorination

\[C_{430 \pm 30} H \]

Energy dependence of neutron inelastic scattering showed that C-H bond is responsible for neutron losses.

23.10.17

INSTITUT MAX VON LAUE - PAUL LANGEVIN

V.V. Nesvizhevsky
Fluorination of nanodiamonds

X-ray diffraction patterns of raw and fluorinated nanodiamond powder:
- Diamond sp\(^3\) cores remain unaffected;
- Destruction of sp\(^2\) carbon shells.

Destruction of sp\(^2\) carbon will lead to significantly higher efficiency of neutron scattering!
Fluorination of nanodiamonds

A) Raman spectra (inelastic scattering of monochromatic light) of raw and fluorinated nanodiamond;
B) FTIR (Fourier-transform infrared spectroscopy) spectra of raw and fluorinated nanodiamond.

Disappearance of sp² carbon, C-H and O-H.
Fluorination of nanodiamonds

13C (a), 1H (b) and 19F (c) MAS NMR spectra of raw and fluorinated nano-diamonds

- The departure of -OH groups and their replacement by -F groups;
- Minor residual H content upon fluorination;
- C-F bonds with sp3 carbons, very low amount of C-F bonds with sp2 carbons.
Chemical cleaning from isotopes posing the neutron activation danger

Fluorination does not affect most disturbing radioactive chemical elements (isotopes).

As revealed by neutron activation analysis of raw and fluorinated nano-diamond samples, most disturbing isotopes are 64Cu, 24Na, 51Cr. A chemical treatment reduces their amount by factors of 12, 6 and 2, respectively.

Wet chemical treatment in concentrated hydrochloric acid at the temperature of 140 °C for 18 hours (+ washing, centrifugation, air annealing at the temperature of 600 °C for 5 hours).

The amount of 38Cl increases by an order of magnitude due to the chemical treatment, however, due to a relatively short lifetime of this radioactive isotope, it is not particularly disturbing (but contributes to absorption!).
0.5 kg fluorinated nano-diamonds were produced in 2-cycle fluorination of thin (2 mm) layers of raw nano-diamond powder with 99.9 % clean F₂ gas at the pressure of 0.6 bar, at the temperature of 450 °C for 12 hours.
The impact of removal of hydrogen from diamond nanoparticles
Quasi-specular reflection
Quasi-specular reflection

The intensity of neutron scattering (within the angular acceptance of the D17 position-sensitive detector in the vertical direction) as a function of neutron wavelength and scattering angle, for the incidence angle of 1 deg.

On the left - non-fluorinated nanodiamond; on the right - fluorinated nanodiamond
The total probability of neutron scattering (within the angular acceptance of the D17 position-sensitive detector) as a function of the neutron wavelength, for the incidence angles of 1deg., 2deg., 3deg.

Graph Description:
- **Red color** – fluorinated nanodiamond
- **Black color** – non-fluorinated nanodiamond
Quasi-specular reflection

The probability of neutron scattering as a function of the neutron wavelength, for the incidence angle of 1deg.
Quasi-specular reflection

Mean angle of reflection as a function of the neutron wavelength, for incident angles 1deg., 2deg., 3deg.

Half-width of the angle of reflection as a function of the neutron wavelength, for incident angles 1deg., 2deg., 3deg.
Quasi-specular reflection

The intensity of neutron scattering (within the angular acceptance of the D17 position-sensitive detector) as a function of neutron wavelength and scattering angle, for the incidence angle of 1deg.

On the left - 5 nm nanodiamond; on the right - 30 nm nanodiamond
Quasi-specular reflection

The total probability of neutron scattering (within the angular acceptance of the D17 position-sensitive detector) as a function of the neutron wavelength, for the incidence angles of 1deg., 2deg., 3deg.

Red color – 30 nm nanodiamond; Black color – 5 nm nanodiamond
Quasi-specular reflection

The probability of neutron scattering as a function of the neutron wavelength, for the incidence angle of 1 deg.

- Powder of diamond nanoparticles provided the first efficient reflectors for VCNs and efficient quasi-specular reflection of CNs;

- Such powders can provide a major gain in fluxes and densities of slow neutrons in various configurations;

- Losses of neutrons in raw diamond nano-powders are dominated by hydrogen impurities; the amount of hydrogen has been largely reduced by fluorination;

- Samples of diamond nanoparticles with “close-to-ideal” parameters have been produced and successfully studied. We explore a possibility of larger-scale production in order to provide their real applications in neutron science/technology.

- More powerful sources of slow neutrons (CNs, VCNs, UCNs)!
 - A new generation of general-purpose neutron sources!?
 - More efficient nuclear reactors of the future?
UCNs versus VCNs

To remind advantages of VCNs:

- Longer observation times (compared to CNs and TNs) that is interesting for particle physics (nñ oscillations, neutron beta-decay etc);

- Larger absorption and fission cross-sections (compared to CNs and TNs) that is interesting for nuclear and particle physics;

- Relaxed geometrical constrains and higher sensitivity (compared to CNs and TNs) that is interesting for neutron reflectometers;

- Broader dynamical range for large-structure diffractometers, time-of-flight spectrometers and reflectometers (compared to CNs and TNs);

- Much higher sensitivity for spin-echo techniques (compared to CNs and TNs);

- Higher fluxes than UCNs etc...
However, huge disadvantages:

- Relatively low fluxes compared to CNs and TNs (as no efficient VCN reflectors have been available...), and

- Short observation times compared to UCNs (also ... as no efficient reflectors have been available).

Our method: Keep advantages and reduce disadvantages!

High fluxes and storage in closed traps

The list of possible applications is long
Directional extraction of VCNs

The gain factor is about 20-30 (preliminary, in progress)
References relevant to nano-diamond neutron reflectors: