Measurements of Ultra-Peripheral Collisions with ATLAS

Aaron Angerami

Probing QCD with Photon Nucleus Interactions at RHIC and the LHC
Institute for Nuclear Theory
Seattle, Washington
Monday February 13, 2017
Ultra-Peripheral Collisions

• At the LHC, ion beams are accompanied by large equivalent photon flux
 – Photons that can be emitted by entire nucleus are enhanced by Z^2
 \[k_{\perp \gamma} \sim \frac{\hbar c}{2R_N} \sim 15 \text{ MeV}, \\ k_{z \gamma} = \gamma_{\text{boost}} \times k_{\perp \gamma} \sim 40 \text{ GeV} \]

• Reactions possible at large impact parameter
 – Event characteristics are qualitatively different than usual AA collisions

• Substantial rate for two photon reactions
 – Mostly exclusive processes
 – Opportunity to study light-by-light scattering

• Can study nPDFs with photo-nuclear jet production
 – Very clean probe of target, a la DIS
ATLAS Detector

Slide from M. Dyndal’s QM2017 talk
$\gamma\gamma \rightarrow \mu^+\mu^-$: Measurement

- Important baseline for other UPC measurements
 - Control over photon flux and its relationship to nuclear breakup modes

- Analysis: ATLAS-CONF-2016-025
 - Two opposite signed muons $p_T > 4$ GeV, $|\eta| < 2.4$ and $m_{\mu\mu} > 10$ GeV
 - Reconstructed vertex with zero additional tracks
 - 12069 total di-muon pairs

- Comparison to STARlight 1.1 (EPA+LO QED)

- Total cross section:
 - $\sigma_{\text{meas.}} = 32.2 \pm 0.3$ (stat.) ± 4.0 (syst.) μb
 - $\sigma_{\text{starlight}} = 31.6 \mu$b
\(\gamma \gamma \rightarrow \mu^+\mu^- \): Cross Sections

- Both \(d\sigma/dM_{\mu\mu} \) and \(d\sigma/dY_{\mu\mu} \) in reasonably good agreement with prediction
\[\gamma \gamma \rightarrow \mu^+ \mu^- : \text{Acoplanarity} \]

- Background or QED radiation?
 - Influences systematics
- Could use theoretical input for how much of broadening comes from radiation
\(\gamma \gamma \rightarrow \gamma \gamma \): Measurement

- Process is forbidden in classical electrodynamics but is a basic prediction of QED
- Has not been directly observed*
 - As particle-like scattering of two photons of well-defined momenta
- Process also sensitive to quartic gauge couplings and potentially new BSM particles
$\gamma \gamma \rightarrow \gamma \gamma$: Results

- **ATLAS paper:** [arxiv:1702.01625](https://arxiv.org/abs/1702.01625), 4.4σ obs (3.8 SM)
- **Cross section:** $\sigma_{\text{meas.}} = 70 \pm 20$ (stat.)±17(syst.) nb
- $E_{T\gamma} > 3$ GeV, $|\eta_\gamma| < 2.37$
- $m_{\gamma\gamma} < 6$ GeV, $p_{T\gamma\gamma} < 2$ GeV, $Aco = 1-\Delta\phi/\pi < 0.01$

![Graphs showing signal selection with and without Aco requirement](image-url)
• Recent CTEQ analysis of nuclear PDFs with comparisons to other fits

• “Old” problem of the low-x behavior
 - Large uncertainties
 - Not so much progress because little/no new data
Measurement Coverage

Figure adapted from EPPS16
1612.05741 [hep-ph]
Measurement Coverage

Figure adapted from EPPS16
1612.05741 [hep-ph]

ATLAS Preliminary
2015 Pb+Pb data, 0.38 nb⁻¹
\(\sqrt{s_{NN}} = 5.02 \text{ TeV}, 0nXn \)
anti-\(k_t, R = 0.4 \) jets
\(p_T^{\text{had}} > 20 \text{ GeV}, m_{\text{jets}} > 35 \text{ GeV} \)
\(0.0001 < z_f < 0.05 \)

Not unfolded for detector response

ATLAS-CONF-2017-011
Event Topology: “Direct”

Photon participates directly in hard scattering

Nucleus intact
No neutrons

“0n”
Rapidity gap

No rapidity gap

Nucleus breaks up
Multiple neutrons

“Xn”
Event Topology: “Resolved”

Nucleus intact
No neutrons

“On”

Gap partially filled

No rapidity gap

Nucleus breaks up
Multiple neutrons

“Xn”

Depends on hadronic/partonic structure of photon

Rapidity
The Measurement: Event Selection

• Using 2015 Pb+Pb data; √s_{NN}=5.02 TeV
 – Events selected with ZDC (+jet) triggers, 0.38 nb⁻¹

• Use ZDC to select “0nXn” events (fiducial)
 – No correction for photon emitter breakup

• Physics backgrounds
 – Ordinary Pb+Pb jet production
 ▶ Remove with minimum gap requirement in γ direction: \(\Sigma_\gamma \Delta \eta > 2 \)
 – Central diffraction, \(\gamma \gamma \rightarrow e^+e^-, \tau^+\tau^-, q\bar{q} \)
 ▶ Not usually 0nXn
 ▶ Remove with maximum gap requirement in A direction: \(\Sigma_A \Delta \eta < 3 \)
 – Cross sections corrected for inefficiency introduced by gap requirements
Event topology: 0nXn

- Events selected ZDC "XOR" trigger
- Red: photon-going direction, 0n
- Black: nuclear direction, Xn
Event Topology: Gaps vs Multiplicity

- **Left:** $\Sigma_\gamma \Delta\eta$ vs N_{trk} for $0nXn$
 - See clear difference between events with, w/o gaps
- **Right:** comparison of N_{trk} distributions for events with ($\Sigma_\gamma \Delta\eta > 2$) and without ($\Sigma_\gamma \Delta\eta < 1$) gaps.
The Measurement: Jets and Kinematics

• Measure differential cross sections as vs of H_T, x_A and z_γ:

$$m_{jets} \equiv \left(\sum E_i - \left| \sum \vec{p}_i \right| \right)^{1/2}$$

$$y_{jets} \equiv \pm \frac{1}{2} \ln \left| \frac{\sum E_i + \sum p_{z_i}}{\sum E_i - \sum p_{z_i}} \right|$$

$$H_T \equiv \sum p_{T_i}$$

$$x_A = \frac{m_{jets}}{\sqrt{s}} e^{-y_{jets}}$$

$$z_\gamma = \frac{m_{jets}}{\sqrt{s}} e^{+y_{jets}}$$

Sign of $z/\eta/y$ defined to be positive in γ direction

- $p_T^{lead} > 20$ GeV
- $|\eta| < 4.4$
- $p_T^{sublead} > 15$ GeV
- $m_{jets} > 35$ GeV

• Event-level observables generalize to n jet final states

• In $2 \rightarrow 2$ scattering limit:
 - $x_A \rightarrow x$ of struck parton in nucleus
 - $z_\gamma \rightarrow x_\gamma y_\gamma$
 - $H_T \rightarrow 2Q$

• No unfolding; measured cross sections compared to MC
 - Use symbol $\tilde{\sigma}$
• Pythia 6 can be used in “mu/gamma p” mode to simulate photo-nuclear processes
 – Contains mixture of direct and resolved processes
 ▶ Does not have right photon flux
• STARlight capable of providing nuclear photon flux
 – Needs to be integrated over target
 – For small b, additional hadronic interactions cause nuclei to break up
 ▶ No longer UPC events
 ▶ Cannot separate photo-nuclear processes from “normal” AA collisions
• Used modified STARlight to calculate weights applied on per-event basis to Pythia sample
Monte Carlo Re-weighting

- Re-weighted Pythia in good (not perfect) agreement with data

\[\frac{1}{N_{\text{evt}}} \frac{dN}{dz} \gamma \]

ATLAS Preliminary

\(\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV}, 0nXn \)

anti-\(k_t \), \(R = 0.4 \) jets

\(p_T^{\text{lead}} > 20 \text{ GeV}, m_{\text{jets}} > 35 \text{ GeV} \)

Data/MC ratio

Not unfolded for detector response
Data-MC Comparisons

\[\frac{1}{N_{\text{evt}}} \frac{dN}{d\Sigma \Delta \eta} \]

\[\frac{1}{N_{\text{evt}}} \frac{dN}{dy_{\text{jets}}} \]

ATLAS Preliminary

Pb+Pb 2015, 0.38 nb\(^{-1}\)

\[\sqrt{s_{NN}} = 5.02 \text{ TeV}, \, 0nXn \]

anti-\(k_t\), \(R = 0.4 \text{ jets} \)

\(p_{T}^{\text{lead}} > 20 \text{ GeV}, \, m_{\text{jets}} > 35 \text{ GeV} \)

\begin{itemize}
 \item **Good description of gap quantity**
 \begin{itemize}
 \item Comfortable w/ MC-based corrections
 \end{itemize}
 \item **Positive rapidity in photon direction**
 \begin{itemize}
 \item See backward shift because \(z_\gamma < x_A \)
 \end{itemize}
\end{itemize}

Not unfolded for detector response
2-D Cross Sections

- Acceptance in \((z_\gamma, x_A)\) strongly dependent on minimum jet system mass
 - Determined by minimum \(p_T\) in analysis
 - Easiest way to get to low \(x_A\) is large \(z_\gamma\)
Corrections and Systematics

• Correct for inefficiency introduced by event selection requirements
 - ZDC inefficiency: can lose 0\text{n}1\text{n} contribution
 ▶ On average: 0.98 ± 0.01
 - “EM pileup”: extra neutrons from EM dissociation
 ▶ $5 \pm 0.5 \%$ on overall normalization
 - Signal events removed by gap requirement
 ▶ Evaluated in MC sample
 ▶ $\sim 1\%$ effect except at very large z_{γ}

• Luminosity: 6.1\% uncertainty

• Jet response: energy scale and resolution uncertainties
Results: H_T Dependence

Slices of x_A

- Not in systematic bands: overall normalization systematic of 6.2%
- Not exactly same as $F_2(x,Q^2)$
 - Still has $\sim 1/Q^4$ and $z\gamma$ dependence in cross section
 - Don’t expect to see scaling explicitly

ATLAS Preliminary
- 2015 Pb+Pb data, 0.38 nb$^{-1}$
- $\sqrt{s}_{NN} = 5.02$ TeV, 0nXn

- $p_T^{lead} > 20$ GeV
- $m_{jets} > 35$ GeV

- $0.0023 < x_A < 0.0049$
- $0.0049 < x_A < 0.01 \times 10^{-2}$
- $0.01 < x_A < 0.022 \times 10^{-4}$
- $0.022 < x_A < 0.048 \times 10^{-6}$
- $0.048 < x_A < 0.1 \times 10^{-8}$
- $0.1 < x_A < 0.22 \times 10^{-10}$
- $0.22 < x_A < 0.47 \times 10^{-12}$

Not unfolded for detector response

Data

Pythia+STARlight scaled to data
Results: z_γ Dependence

- Largest disagreement with model at large and small z_γ where reweighting is most significant
- Can extend to lower x_A by going to higher z_γ
Results: x_A Dependence

ATLAS Preliminary
2015 Pb+Pb data, 0.38 nb$^{-1}$
$\sqrt{s_{NN}} = 5.02$ TeV

anti-k_T, $R=0.4$ jets

- $p_T^{\text{lead}} > 20$ GeV
- $m_{\text{jets}} > 35$ GeV

Slices of H_T

Data

- $42 < H_T < 50$ GeV
- $50 < H_T < 59$ GeV (x 10^{-1})
- $59 < H_T < 70$ GeV (x 10^{-2})
- $70 < H_T < 84$ GeV (x 10^{-3})
- $84 < H_T < 100$ GeV (x 10^{-4})
- $100 < H_T < 119$ GeV (x 10^{-5})
- $119 < H_T < 141$ GeV (x 10^{-6})
- $141 < H_T < 168$ GeV (x 10^{-7})
- $168 < H_T < 200$ GeV (x 10^{-8})

Pythia+STARlight

Scaled to data

Not unfolded for detector response

Slices of z_γ

Data

- $0.0002 < z_\gamma < 0.0003$
- $0.0003 < z_\gamma < 0.0006$ (x 10^{-2})
- $0.0006 < z_\gamma < 0.0012$ (x 10^{-4})
- $0.0012 < z_\gamma < 0.0022$ (x 10^{-6})
- $0.0022 < z_\gamma < 0.0042$ (x 10^{-8})
- $0.0042 < z_\gamma < 0.0077$ (x 10^{-10})
- $0.0077 < z_\gamma < 0.0144$ (x 10^{-12})
- $0.0144 < z_\gamma < 0.0269$ (x 10^{-14})

Pythia+STARlight

Scaled to data

Not unfolded for detector response

ATLAS Preliminary
2015 Pb+Pb data, 0.38 nb$^{-1}$
$\sqrt{s_{NN}} = 5.02$ TeV, 0nXn

- 0.4 jets
- $\gamma > 20$ GeV
- $T_p > 35$ GeV

Results:

- Not unfolded for detector response

Preliminary
• Presented a measurement of photo-nuclear jet production
 – Qualitatively different than normal jet production in hadronic collisions
 – Expected features— rapidity gaps and neutron distributions— observed in the data

• Measurement needs to be unfolded
 – Lots of experience with this

• More rigorous comparisons to theory

• Input into new nPDF analyses
 – Domain of x/Q^2 not covered by previous data

• Connects to day 1 measurements at EIC
Questions/Remarks

• Given recent nPDF analyses, would this data actually be used in a fit?
 - e.g. recent EPPS16 analysis ignores potentially useful data like inclusive jet production

• Should we be presenting measurements of (e.g. unfolding) something closer to the structure function?

• Role of direct vs resolved photon contributions
 - Description of photon structure required for extraction of nPDF
 - How should this be handled in measurement?
Extras
Event topology: 0nXn

- Events selected ZDC "XOR" trigger
- Red: photon-going direction, 0n
- Black: nuclear direction, Xn
Event topology (experimental)

\[\Sigma \Delta \eta = a + b + c \]

-\(y \) \hspace{1cm} +\(y \)

Traditional “edge gap”

\(\Sigma \Delta \eta \) in ZDC

\(\Delta \eta^{\text{edge}} \) in ZDC

N neutrons in ZDC\(_A \)

0 neutrons in ZDC\(_\gamma \)

Photon-going direction

\(\phi \)

\(\phi \)

\(\phi \)

\(\phi \)
Event topology (experimental)

- $\Sigma \Delta \eta = a + b + c$

- ZDC requirement: “0nXn” topology
- Minimum $\Sigma \gamma \Delta \eta$ requirement: $\Sigma \gamma \Delta \eta > 2$
- Maximum $\Sigma A \Delta \eta<$ requirement: $\Sigma A \Delta \eta < 3$
• **Left:** jet p_T spectra

• **Right:** leading - sub-leading $\Delta \phi$ distributions for different numbers of jets
Event topology: gaps

- Left: compare $\Sigma \Delta \eta$ to forward edge gaps
 - See effect of resolved photons in split gaps
 $\Sigma \gamma \Delta \eta > \Delta \eta_{\text{edge}}$

- Right: $\Sigma \gamma \Delta \eta$ vs $\Sigma A \Delta \eta$
 - backgrounds (e.g. $\gamma \gamma \rightarrow e^+e^-$) for large $\Sigma \gamma \Delta \eta$
Data-driven corrections are performed to account for di

This measurement uses

where factor of 2 has been inserted to account for the symmetry of the Pb+Pb collision system. The cross section for

As discussed above, the experimentally accessible part of the photo-nuclear cross section only receives

The events used for this analysis were reconstructed using a configuration of the ATLAS software typically

5.1 Reconstruction

5 Analysis

The total cross section is obtained by multiplying by

As those applied in minimum-bias measurements

Apply per-event weight to Pythia sample

From STARlight

\[w(E) \equiv \frac{dN_{\gamma}^{\text{eff}}}{dE} \bigg/ \frac{dN_{\gamma}^{\text{PYTHIA}}}{dE} \]

Flux used by Pythia
Jet system distributions

- Distributions of the primary ingredients to the kinematic variables used in cross-section
- Data-MC description very good for variables sensitive to transverse dynamics
Event topology (idealized)

Direct
- Nucleus intact
- No neutrons
- Rapidity gap
- No rapidity gap
- Nucleus breaks up
- Multiple neutrons

Resolved
- Nucleus intact
- No neutrons
- Gap partially filled
- No rapidity gap
- Nucleus breaks up
- Multiple neutrons

\[
\frac{y}{A} \quad \frac{x}{A} \quad \gamma
\]