Electronic structure quantum Monte Carlo methods with variable spins and fixed-phase/node approximations

C. Melton, M.C. Bennett, L. Mitas

with A. Ambrosetti, F. Pederiva

North Carolina State University
Universities of Trento and Padova

SIGN 2017, INT, U. Washington, Seattle
projector QMC, Slater-Jastrow trial functions (single, multi-ref) and the fixed-node approximation → “standard model” FNDMC

Hamiltonian with (valence) electrons and ions

QMC/DMC: $\phi_0 = \lim_{\tau \to \infty} \exp(-\tau H) \psi_{T(rial)} \rightarrow H \phi_0 = E_0 \phi_0$

- trial function $\psi_T = \sum_k c_k \det^\uparrow_k [\phi_\alpha] \det^\downarrow_k [\phi_\beta] \exp[U_{corr}]$

sampled in coord. space with fixed-node approx.
EoS FeO solid at high pressures: FNDMC transition at ~ 65 GPa (exper. 70-100); also agreement for cohesion, gaps, bulk moduli, etc $\rightarrow \sim 95(2)\%$ of E_{corr}
but so far static spins only, while we need spins to vary

spinless electrons-ions Hamiltonian → spatial-only problem,

spin channels factorized: \[\psi_T = \sum_k c_k \det_k^\uparrow [\phi_\alpha(r_i)] \det_k^\downarrow [\phi_\beta(r_j)] \exp[U_{\text{corr}}] \]

now, include spin-orbit \[\phi_n(r_i, s_i) = \alpha \phi^\uparrow(r_i) \chi^\uparrow(s_i) + \beta \phi^\downarrow(r_i) \chi^\downarrow(s_i) \]
determinant of spinors \[\psi_{\text{Trial}} = \psi_{\text{Trial}}(R, S) = \det[\phi_n(r_i, s_i)] \exp(U_{\text{corr}}) \]
spin “coordinates” : \[\chi^\uparrow(1/2) = \chi^\downarrow(-1/2) = 1 \quad \chi^\uparrow(-1/2) = \chi^\downarrow(1/2) = 0 \]
what is the problem then? variationally ok

just sampling of a larger space

\[\int \cdots \int d\mathbf{r}_1 \cdots d\mathbf{r}_N \rightarrow \sum_{\sigma_1} \cdots \sum_{\sigma_N} \int \cdots \int d\mathbf{r}_1 \cdots d\mathbf{r}_N \]

e.g., A. Ambrosetti, F. Pederiva, LM ,..., Phys. Rev. B 85, 045115 ('12)

(also already in 1985 by J. Carlson and M. Kalos for nuclei ...)

<table>
<thead>
<tr>
<th></th>
<th>VMC [eV]</th>
<th>Exper. [eV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tl</td>
<td>J=3/2/g.s. J=1/2</td>
<td>0.85(5)</td>
</tr>
<tr>
<td>Pb</td>
<td>J=1 /g.s. J=0</td>
<td>0.88(7)</td>
</tr>
<tr>
<td>Pb</td>
<td>J=2 /g.s. J=0</td>
<td>1.23(6)</td>
</tr>
<tr>
<td>Bi</td>
<td>J=3/2 /g.s. J=3/2</td>
<td>1.31(8)</td>
</tr>
</tbody>
</table>
however, projection QMC (DMC etc) is less straightforward

discrete moves between \(2^N\) points:
- moves of fixed length (no time step)
- no smooth importance guiding
- increased local energy fluctuations

\(\Rightarrow\) inefficient with \(N\)

more issues:
- inherently complex wave functions
- nonlocal SO pseudopots (PP) for heavy elements

suggested ideas:

- sample the spinors (Pederiva, Gandolfi, Ambrosetti 2000s) with gradual updates ("stochastic rotations of spinors")

- smooth out spin configurations + fixed-phase approximation (Melton, Ambrosetti, Pederiva, LM et al, 2016)
step one: smooth out spin configurations/paths

we make spin configurations non-discrete by using continuous (overcomplete) and compact representation, possible choice:

\[\chi^\uparrow(s) = \exp(+is), \quad \chi^\downarrow(s) = \exp(-is); \quad s \in (0, 2\pi) \]

different from “rotating spinors”, here: spinors are fixed

since the spinors are fixed one can use projection onto trial function to eliminate nonlocality of PP and SO terms

\[W_{SORPP} = \sum_i \left[W_{ARPP}^{(i)} + \sum_i W_{SO}^{(i)} \right] \quad W_{SO}^{(i)} = \sum_{j,l} v_{jl}(r_i) P_{jl}^{(i)} l_i \cdot s_i P_{jl}^{(i)} \]

nonlocal SORPP term → locality approximation (LM et al '91)

\[W^\Re \approx W_T^\Re = \Re \left[\psi_T^{-1} W \psi_T \right] \]
step two: complex wave function \rightarrow fixed-phase (FP)

$$
\psi = \rho(R, S) \exp[i\phi(R, S)]
$$

the Schrodinger equation breaks into Re and Im

$$
-\partial_r \rho = [T + V + W^R + (1/2)(\nabla \phi)^2] \rho
$$

$$
-\partial_r \phi = [T \phi - (\nabla \ln \rho) \cdot \nabla \phi + W^\Im]
$$

the first equation gives the energy eigenvalue and we invoke the fixed-phase (FP) approximation (Ortiz et al '92)

$$
\phi \approx \phi_T \rightarrow V_{\text{eff}} = (1/2) (\nabla \phi_T)^2
$$

FP seems like a step into an unknown territory, but it is not: fixed-node is a limit/special case of the fixed-phase for real wfs

$$
(\nabla \phi_T)^2 \rightarrow C_\infty \delta[R - R_{\text{node}, T}]
$$
fixed-phase → special case of fixed-node, sketch of a demonstration

let $\psi_T(R)$ be real, fermionic, with nodes at subset $R_{node,T}$

construct

$\tilde{\psi} = \psi_T + ia \psi_{symm,>0}$

$\tilde{\phi} = \arctan \left(\frac{\Re \tilde{\psi}}{|\tilde{\psi}|^2} \right)$

then the limit of potential from the phase \rightarrow node

$\lim_{a \to 0} (\nabla \tilde{\phi})^2 \rightarrow C_\infty \delta [R - R_{node,T}]$
step three: sampling of the spin configurations
→ fixed-phase spinorbit DMC (FPSODMC)

effective free-particle Hamiltonian (kinetic term) for spins

\[H \rightarrow H + H_{\text{spin}}, \quad H_{\text{spin}}(s_i) = - \frac{1}{2\mu_s} \left[\frac{\partial^2}{\partial s_i^2} + 1 \right] \]

\(H_{\text{spin}} \) annihilates arbitrary spinor \(H_{\text{spin}}(s_i) [\alpha \phi^\dagger(r_i) \chi^\dagger(s_i) + \beta \phi^\dagger(r_i) \chi^\dagger(s_i)] = 0 \)

therefore, to the leading order no contribution to the energy (subleading overshadowed by the fixed-phase bias since SO is small)

- effective spin mass → time step on the spin subspace
 (overall, basically two time steps, spatial and spin)

FPSODMC method: tests on atomic and molecular systems
total energies: Pb atom with valence $6s^26p^2$

FPSODMC(....) vs CI with ccpVxZ basis(—)

$1^1S_0 \rightarrow J=0; \frac{3}{2} \frac{3}{2}$

1^1D_2

3^3P_2

3^3P_1

$3^3P_0 \rightarrow J=0; \frac{1}{2} \frac{1}{2}$
Cr and Mo atoms ground states → 7S_3 (d^5s^1)

W atom is isovalent, what is its ground state?

- averaged SO, any method (DFT, CI, QMC) → 7S_3 ($5d^56s^1$)
- explicit SO two-component, open-shell only CI → 7S_3 ($5d^56s^1$)
- explicit SO two-component, full CI or FPSODMC/rCl → 5D_0 ($5d^46s^2$)

Both SO and correlation needed to flip the state!
W atom SO splitted sd-manifold of excitations

<table>
<thead>
<tr>
<th>Config.</th>
<th>State</th>
<th>COSCI</th>
<th>DMC/COSCI</th>
<th>CISD</th>
<th>DMC/rCISD</th>
<th>Exp</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5d^46s^2$</td>
<td>5D_1</td>
<td>0.10</td>
<td>0.13(1)</td>
<td>0.10</td>
<td>0.15(1)</td>
<td>0.21</td>
</tr>
<tr>
<td>$5d^56s^1$</td>
<td>7S_3</td>
<td>-0.85</td>
<td>-0.19(1)</td>
<td>0.12</td>
<td>0.19(1)</td>
<td>0.37</td>
</tr>
<tr>
<td>$5d^46s^2$</td>
<td>5D_2</td>
<td>0.24</td>
<td>0.30(1)</td>
<td>0.13</td>
<td>0.30(1)</td>
<td>0.41</td>
</tr>
<tr>
<td>$5d^46s^2$</td>
<td>5D_3</td>
<td>0.42</td>
<td>0.49(1)</td>
<td>0.29</td>
<td>0.51(1)</td>
<td>0.60</td>
</tr>
<tr>
<td>$5d^46s^2$</td>
<td>5D_4</td>
<td>0.60</td>
<td>0.69(1)</td>
<td>0.45</td>
<td>0.69(1)</td>
<td>0.77</td>
</tr>
</tbody>
</table>

FPSODMC agrees with experiment “ok”, but better RPPs needed!
FPSODMC applied to the PbH molecule (the averaged SO treatment off by 1 eV!)

<table>
<thead>
<tr>
<th>Method</th>
<th>E_{bind} [eV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>spin-average CCSD(T)</td>
<td>2.66</td>
</tr>
<tr>
<td>spin-average FNDMC</td>
<td>2.58(1)</td>
</tr>
<tr>
<td>MRCIS/SO+pert. spin-average CCSD(T)</td>
<td>1.61-1.71</td>
</tr>
<tr>
<td>FPSODMC</td>
<td>1.63(1)</td>
</tr>
<tr>
<td>Exper.</td>
<td>~ 1.69(5)</td>
</tr>
</tbody>
</table>

Lubos_Mitas@ncsu.edu
Sn\textsubscript{2} dimer should be simple, it is the fourth row ... but SO correction is \(~ 0.5 \text{ eV} \)! (small core SORPP, 44 val. e-)

![Graph showing binding energy vs bond length for different methods: FPSODMC and FNDMC. The experimental values are also plotted.]
interestingly, one can go “back” to fixed-node, ie, recover the spin-labeled fixed-node trial form ...

consider spinors $\chi_\alpha(r, s) = \phi_\alpha(r) e^{is}$, $\chi_\beta(r, s) = \phi_\beta(r) e^{-is}$

set variables to two values: $\{up\} = \{s_i\} \rightarrow s$, $\{down\} = \{s_j\} \rightarrow s'$, $s \neq s'$

$$
\begin{vmatrix}
\varphi_1(1)e^{is} & \varphi_1(2)e^{is'} & \varphi_1(3)e^{is} & \varphi_1(4)e^{is'} \\
\varphi_1(1)e^{-is} & \varphi_1(2)e^{-is'} & \varphi_1(3)e^{-is} & \varphi_1(4)e^{-is'} \\
\varphi_2(1)e^{is} & \varphi_2(2)e^{is'} & \varphi_2(3)e^{is} & \varphi_2(4)e^{is'} \\
\varphi_2(1)e^{-is} & \varphi_2(2)e^{-is'} & \varphi_2(3)e^{-is} & \varphi_2(4)e^{-is'} \\
\vdots & \vdots & \vdots & \vdots
\end{vmatrix}
$$

$$
[sin(s' - s)]^{N/2} \text{det} \begin{vmatrix}
\varphi_1(1) & \varphi_1(3) & 0 & 0 \\
\varphi_2(1) & \varphi_2(3) & 0 & 0 \\
0 & 0 & \varphi_1(2) & \varphi_1(4) \\
0 & 0 & \varphi_2(2) & \varphi_2(4) \\
\vdots & \vdots & \vdots & \vdots
\end{vmatrix}
$$
fixed-node trial form but with a complex twist

spins factorize out of the determinant and we get up/down product:

\[\psi_T = \text{det}[\chi_j] \rightarrow \psi_T = \text{const} \times [\sin((s-s')^N/2)] \text{det}^\uparrow[\phi_i] \text{det}^\downarrow[\phi_j] \]

- the most interesting regime: \(\{\text{up}\} = \{s_i\} \approx s \quad \{\text{down}\} = \{s_j\} \approx s' \),

- basically the fixed-node limit but complexified, i.e., has properties of the fixed-phase

- this can be achieved by the choice of spin variables and by adjusting the time step for spin variables
two limits: slow spins → fixed-node
fast spins → full fixed-phase

- group the spins to two distinct values → up, down and run FP
 C atom, all e-

~ 5% E_{corr}

indep. calculated FN value ($\sim 95\%$ of E_{corr})

0 ← spin time step → large
fixed-node vs fixed-phases biases from:
independent FN real wf vs FP at the FN limit
fixed-phase: some considerations

- has a form of effective (many-body) potential/field

\[V_{ph} = \frac{1}{2} (\nabla \phi)^2 \]

\[- \partial_t \rho = \left[T + V + V_{ph} \right] \rho \]

- \(\rho(R) \geq 0 \), its zeros are codimension 2 (unlike FN codimension 1)

- ergodicity generically ok (no artificial nodal domains → important for calculations of other properties than energy)

- smaller fluctuations and easier sampling (no recrossing)
fixed-phase amplitude zeros: codimension 2

- 2 harmonic electrons, $^3P(sp)$ state $\rightarrow \psi_{exact} = g(r_1, r_2, r_{12}) \det[1, Y_{11}]$

 \begin{align*}
 \text{fixed-node: } V_{FN} &= V_\infty \delta(x_1 - x_2) \\
 \partial \Gamma &= \{(x_1 = x_2) \otimes R^4\} \rightarrow d = 5 \text{ line} \\
 \Pi_0 &= \{(x_{12}^2 + y_{12}^2 = 0) \otimes R^4\} \rightarrow d = 4 \text{ point}
 \end{align*}

- three periodic electrons $\psi_T = \det[1, e^{ix}, e^{iy}]$

 \begin{align*}
 \text{fixed-node: } \psi_T &= \Re \{\det[1, e^{ix}, e^{iy}]\} \\
 \text{fixed-phase: } \rho_T &= |\psi_T|
 \end{align*}

 2 nodal domains one domain
coming back to spatial-only nodes: some properties

- roots of 1D polynomial/function “anchor” its behavior
- nodes are roots of multivariate polynomial/function
 \[\psi(r_1, r_2, ..., r_N) = \psi(R) = 0 \]
- in addition, nodes of eigenst. of Schrodinger equation are special:
 - nodal domain averages \(\rightarrow \text{nda} \)
 - nodal surface averages \(\rightarrow \text{nsa} \)
nda: nodal domain averages
(not usual expectations, direct imprint from amplitudes)

write the total energy as “kinetic” and “potential” components that are “one-sided expectations”, or, nodal domain averages (nda):

\[
E = E_{\text{kin}}^{\text{nda}} + E_{\text{pot}}^{\text{nda}}
\]

\[
E_{\text{kin}}^{\text{nda}} = \int_{\partial \Gamma} |\nabla_R \psi| \, d \tilde{R} / \int |\psi| \, d R \quad E_{\text{pot}}^{\text{nda}} = \int V(R)|\psi| \, d R / \int |\psi| \, d R
\]

\[
E_{\text{kin}}^{\text{nda}} \text{ determined by } |\nabla_R \psi| \text{ solely on the node } \partial \Gamma = \{ R ; \psi(R) = 0 \}
\]

- nda components enable to distinguish between degenerate states with different nodes (eg, different symmetries)

- enables to show some unexpected equivalences, eg, fermionic and bosonic (excited) nodes equivalent, just “rotated”

Lubos_Mitas@ncsu.edu
different states, even different statistics, but equivalent nodes

three atomic states, 2p² occupation: \(^3\)P, \(^1\)S, \(^1\)D all have the same nda energy components …

\[
\begin{array}{ccccc}
E_{\text{tot}} & E_{\text{kin}} & E_{\text{pot}} & E^{\text{nda}}_{\text{kin}} & E^{\text{nda}}_{\text{pot}} \\
\end{array}
\]

\(^3\)P, \(^1\)S, \(^1\)D (2p²)
-1/4
1/4
-1/2
1/12
-1/3

… why? Consider the 5D node projected into 3D:

\(^3\)P: electron sees a plane defined by ang. mom. axis and the second el.

\(^1\)D: electron sees a plane which contains ang. mom. axis and is orthogonal to such plane defined by the second electron

\(^1\)S: electron sees a plane which is orthogonal to the position vector of the second electron

in all three cases the node is a 5D hyperbolic surface in 6D

arxiv: 1307.5567
nsa: nodal surface averages

Total energy as the following “kinetic” and “potential” components

\[E = E^{\text{nsa}}_{\text{kin}} + E^{\text{nsa}}_{\text{pot}} \]

\[E^{\text{nsa}}_{\text{kin}} = \int_{\partial \Gamma} h(R) |\nabla_R \psi|^{-2} \ldots \text{expression is too long} \]

\[E^{\text{nsa}}_{\text{pot}} = \int_{\partial \Gamma} h(R) V(R) d \tilde{R} / \int_{\partial \Gamma} h(R) d \tilde{R} \]

\(h(R) \) is a weight function, all integrals only over the nodal surface

- choose \(h(R) \) such that the average of potential over the node gives the eigenvalue (note: kinetic part vanishes)

\[\int_{\partial \Gamma} h(R) [V(R) - E] d \tilde{R} = 0 \]

- node is special: any other level set needs more information
summary

- unifying formalism: FN and FP, static and variable spins
- sampling advantages of codimension 2 (for excitations, especially)
- wave functions with phase/spins are more general, possible additional variational freedom
- nodal surfaces are unique → properties can possibly reveal how to construct them more efficiently

PRA 2016, JCP 2016, 1605.03813, 1703.03481 + to be submitted soon
total energies Bi atom with valence $6s^26p^3$
FPSODMC/COS(___), FPSODMC/restr.CI(___) vs CI(___)
similar for molecules now including nonlocal ECPs and differences dimer – atoms, example of N₂

small difference but within the scale of FN biases
Bi atom excitations/splittings compared with experiment

Bi atom SO splittings [eV] (w.r.t. to the g.s. |J=3/2>)

<table>
<thead>
<tr>
<th></th>
<th>J; j1,j2,j3></th>
<th>DF</th>
<th>CI</th>
<th>FPSODMC</th>
<th>Exper.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3/2;></td>
<td>4.42</td>
<td>4.00</td>
<td>4.01(1)</td>
<td>4.04</td>
</tr>
<tr>
<td></td>
<td>1/2;></td>
<td>3.11</td>
<td>2.69</td>
<td>2.63(1)</td>
<td>2.69</td>
</tr>
<tr>
<td></td>
<td>5/2;></td>
<td>2.13</td>
<td>1.89</td>
<td>1.84(1)</td>
<td>1.91</td>
</tr>
<tr>
<td></td>
<td>3/2;></td>
<td>1.54</td>
<td>1.44</td>
<td>1.31(1)</td>
<td>1.42</td>
</tr>
</tbody>
</table>
key points about FPSODMC method

- fixed-phase: no sign, basis or ergodicity problem → $\rho(R)$ is nonzero except for isolated points (ie, codimension 2)

- zero variance property → energy fluctuations decrease with ψ_T error squared (as for the fixed-node)

$$\psi_T \leftrightarrow V_{eff} \text{ one-to-one mapping for any state}$$

- treatment of SO terms natural to its nonlocality → localization

- reuse of much existing QMC methodology/codes from static spins

Lubos_Mitas@ncsu.edu
Green's function for spinor sampling

example of Rashba SO in 2D*: $V_{\text{Rashba}} = \lambda \sum_j \left[p_j^y \sigma_j^x - p_j^x \sigma_j^y \right]$

$$G_{j}^{\text{spin}} = \begin{pmatrix}
\cos(\gamma \delta r_j) & \sin(\gamma \delta r_j) \frac{-i \delta y_j + \delta x_j}{\delta r_j} \\
-\sin(\gamma \delta r_j) \frac{i \delta y_j + \delta x_j}{\delta r_j} & \cos(\gamma \delta r_j)
\end{pmatrix}$$

where $\gamma \propto \lambda$ and $\delta r_j, \delta x_j, \delta y_j$ are spatial displacements

- similar to Hubbard-Stratonovitch approaches

*A. Ambrosetti, F. Pederiva, E. Lipparini, S. Gandolfi, PRB 80, 125306 ('09)
2D fermion gas with Stoner and Rashba interactions: spin-polarization vs. interaction strength

FIG. 3: Polarization of Fermi gas along the z direction as a function of the two-body interaction scattering length a. Results are given in absence of SO interaction ($\lambda = 0$) and for two different Rashba interaction strengths ($\lambda = 0.15, 0.30$).

FNDMC vs traditional correlated wf methods: nodes converge in basis very rapidly, augTZV or so