The pinhole algorithm
and nuclear structure calculations

Dean Lee
North Carolina State University
Nuclear Lattice EFT Collaboration

SIGN 2017
INT, University of Washington
March 24, 2017
Outline

Lattice chiral effective field theory

New interactions

Model-independent measure of clustering

Pinhole algorithm

Model-independent measure of alpha cluster geometry

Summary and outlook
Lattice chiral effective field theory

TALENT summer school lectures: qmc2016.wordpress.ncsu.edu
Chiral effective field theory

Construct the effective potential order by order

V^{OPEP} Contact interactions

V^{TPEP}

Leading order (LO)

Next-to-leading order (NLO)
Euclidean time projection

\[\tau = \tau_f \]

\[\pi \]

\[\exp(-H\tau) \]

\[\tau = 0 \]
Auxiliary field method

We can write exponentials of the interaction using a Gaussian integral identity

\[
\exp \left[-\frac{C}{2} (N^\dagger N)^2 \right] \quad \rightarrow \quad (N^\dagger N)^2
\]

\[
= \sqrt{\frac{1}{2\pi}} \int_{-\infty}^{\infty} ds \exp \left[-\frac{1}{2} s^2 + \sqrt{-C} \ s (N^\dagger N) \right] \quad \rightarrow \quad sN^\dagger N
\]

We remove the interaction between nucleons and replace it with the interactions of each nucleon with a background field.
Schematic of lattice Monte Carlo calculation

\[
\begin{align*}
M_{\text{LO}} & = M_{\text{approx}} & = O_{\text{observable}} \\
M_{\text{NLO}} & = M_{\text{NNLO}}
\end{align*}
\]

Hybrid Monte Carlo sampling

\[
Z_{n_t, \text{LO}} = \langle \psi_{\text{init}} | \boxed{\text{1}} | \psi_{\text{init}} \rangle
\]

\[
Z_{n_t, \text{LO}}^{\langle O \rangle} = \langle \psi_{\text{init}} | \boxed{\text{1}} | \psi_{\text{init}} \rangle
\]

\[
e^{-E_{0, \text{LO}} a_t} = \lim_{n_t \to \infty} \frac{Z_{n_t + 1, \text{LO}}}{Z_{n_t, \text{LO}}} \]

\[
\langle O \rangle_{0, \text{LO}} = \lim_{n_t \to \infty} \frac{Z_{n_t, \text{LO}}^{\langle O \rangle}}{Z_{n_t, \text{LO}}}
\]
\[Z_{n_t, \text{NLO}} = \langle \psi_{\text{init}} | \underbrace{\text{ } \cdots \text{ } | \psi_{\text{init}} \rangle} \]

\[Z^{(O)}_{n_t, \text{NLO}} = \langle \psi_{\text{init}} | \underbrace{\text{ } \cdots \text{ } | \psi_{\text{init}} \rangle} \]

\[\langle O \rangle_{0, \text{NLO}} = \lim_{n_t \to \infty} \frac{Z^{(O)}_{n_t, \text{NLO}}}{Z_{n_t, \text{NLO}}} \]
Adiabatic projection method

The adiabatic projection method a first principles method for scattering and reactions. It computes enough scattering information to construct an effective Hamiltonian.

Strategy is to divide the problem into two parts. In the first part, we use Euclidean time projection and lattice Monte Carlo to derive an \textit{ab initio} low-energy cluster Hamiltonian, called the adiabatic Hamiltonian.

In the second part, we use the adiabatic Hamiltonian to compute scattering phase shifts or reaction amplitudes.

Unfortunately so far lattice simulations have mostly been restricted to nuclei with $N = Z$ due to Monte Carlo sign oscillations.
alpha-alpha S-wave scattering

Two different LO interactions, A and B, that are nearly the same for up to four nucleon systems.
Fit three parameters at leading order

average nucleon-nucleon s-wave scattering length
average nucleon-nucleon s-wave effective range
alpha-alpha s-wave scattering length
Average sign at largest Euclidean-time data point
Ground state energies

Model-independent measure of clustering

Let $\rho(n)$ be the total nucleon density operator on lattice site n. To construct a probe for alpha clusters, we define ρ_4 as the expectation value of $\frac{\rho^4(n)}{4!}$ summed over n.

For nuclei with even Z and even N, there are likely no well-defined 3H or 3He clusters since their formation is not energetically favorable.

Therefore we can use short-distance three-nucleon operators as a second probe of alpha clusters. We define ρ_3 as the expectation value of $\frac{\rho^3(n)}{3!}$ summed over n.
Due to divergences at short distances, ρ_3 and ρ_4 will depend on the short-distance regularization scale, which in our case is the lattice spacing. However the regularization-scale dependence of ρ_3 and ρ_4 does not depend on the nucleus being considered.

Therefore if we let $\rho_{3,\alpha}$ and $\rho_{4,\alpha}$ be the corresponding values for the alpha particle, then the ratios $\rho_3/\rho_{3,\alpha}$ and $\rho_4/\rho_{4,\alpha}$ are free from short-distance divergences and are model-independent quantities up to contributions from higher-dimensional operators in an operator product expansion.
Unfortunately there is no algorithm available for *ab initio* auxiliary field Monte Carlo simulations to determine the density distribution of particles relative to the center of mass. The problem is that the particle wave functions in the auxiliary field simulation are a superposition of many values for the center of mass.
Pinhole algorithm

Consider the density operator for nucleon with spin i and isospin j

$$\rho_{i,j}(n) = a_{i,j}^\dagger(n)a_{i,j}(n)$$

We construct the normal-ordered A-body density operator

$$\rho_{i_1,j_1,\cdots,i_A,j_A}(n_1,\cdots,n_A) = :\rho_{i_1,j_1}(n_1)\cdots\rho_{i_A,j_A}(n_A):$$

In the A-particle subspace, we have the identity

$$\sum_{i_1,j_1,\cdots,i_A,j_A} \sum_{n_1,\cdots,n_A} \rho_{i_1,j_1,\cdots,i_A,j_A}(n_1,\cdots,n_A) = A!$$

In the simulations we do Monte Carlo sampling of the amplitude

$$A_{i_1,j_1,\cdots,i_A,j_A}(n_1,\cdots,n_A, L_t) = \langle \Psi_I | M_{L_t/2}^{L_t/2} \rho_{i_1,j_1,\cdots,i_A,j_A}(n_1,\cdots,n_A) M_{L_t/2}^{L_t/2} | \Psi_I \rangle$$
\[\tau = \tau_f \]

\[\tau = \tau_f / 2 \]

\[\tau = 0 \]

Metropolis updates of pinholes

hybrid Monte Carlo updates of auxiliary/pion fields
See also König, D.L., arXiv:1701.00279 for discussion of asymptotic properties
Model-independent measure of alpha cluster geometry

For the carbon isotopes, we can map out the alpha cluster geometry by computing the density correlations of the three spin-up protons. We compute these density correlations using the pinhole algorithm.

Given the rich cluster structure of the excited states of 12C, this raises the interesting possibility of similar cluster states appearing in 14C and 16C.

In particular, the bound 0^+_2 state at 6.59 MeV above the ground state of 14C may be a bound-state analog to the Hoyle state resonance in 12C at 7.65 MeV. It may also have a clean experimental signature since low-lying neutron excitations are suppressed by the shell closure at eight neutrons.

There is also a bound 0^+_2 in 16C, however in this case one expects low-lying two-neutron excitations to be important, thereby making the analysis more complicated.
We can make a simple Gaussian lattice model of the distribution of the spin-up protons. We consider a probability distribution \(P(\vec{r}_1, \vec{r}_2, \vec{r}_3) \) on our lattice grid for the positions of the protons \(\vec{r}_1, \vec{r}_2, \) and \(\vec{r}_3. \)

We take the probability distribution to be a product of Gaussians with root-mean-square radius 2.6 fm (charge radius of \(^{14}\text{C}\)) and unit step functions which vanish if the magnitude of \(\vec{r}_1 - \vec{r}_2, \) \(\vec{r}_2 - \vec{r}_3, \) or \(\vec{r}_3 - \vec{r}_1 \) is smaller than 1.7 fm (charge radius of \(^4\text{He}\)).

We can factor out the center-of-mass distribution of the three spin-up protons and recast the Gaussian factors as a product of Gaussians for the separation vectors \(\vec{r}_1 - \vec{r}_2, \vec{r}_2 - \vec{r}_3, \) and \(\vec{r}_3 - \vec{r}_1 \) with root-mean-square radius 4.5 fm.
Gaussian model
Summary and outlook

These are exciting times for *ab initio* nuclear theory of all varieties. In lattice EFT, we have new projects in motion which are pushing the current frontiers.

One development is our improved understanding of the connection between nuclear forces and nuclear structure. This has led to a more efficient set of lattice chiral EFT interactions that should have better order-by-order convergence for a wide range of nuclear masses and also reduce the Monte Carlo sign oscillations.

Another development is the pinhole method for calculating A-body densities with applications to density distributions, matrix elements of electric and magnetic multipole operators, form factors, and radiative capture reactions.

We now also have model-independent measures of clustering and the geometry of alpha clusters.