Mass ejection from neutron–star mergers in numerical relativity

Masaru Shibata

Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University
Outline

I. Brief introduction
II. Typical scenarios for NS mergers (both for NS-NS and BH-NS)
III. Dynamical mass ejection
IV. Early MHD/viscous ejection from NS-NS
V. Viscous (+neutrino-assisted) disk wind
VI. Summary
I Introduction (not necessary?)

Why mass ejection from NS binaries is important?

1. Electromagnetic counterparts of NS merger: Key for confirming gravitational-wave detection (talks by Tanaka & Cowperthwaite)

2. Possible site of r-process nucleosynthesis (talks by Foucart & Hotoke)

Jet–ISM Shock (Afterglow)
Optical (hours–days)
Radio (weeks–years)

Ejecta–ISM Shock
Radio (years)

Kilonova
Optical (t ~ 1 day)

Merger Ejecta
Tidal Tail & Disk Wind
v ~ 0.1–0.3 c

Optical (t ~ 1 day)

GRB
(t ~ 0.1–1 s)

BH

Metzger & Berger 2012

Gold seen in neutron star collision debris
Material ejected in gamma-ray bursts may be source of heavy elements

In the following, I focus on

- Ejecta mass M_{eject}
- Electron fraction Y_e

Light curve

Abundance pattern

Tanaka & Hotoke 2013

Korobkin et al. 2012
II A Typical scenarios for NS-NS merger

• **Constraints from radio-telescope observations:**
 1. Approximately 2-solar-mass NSs exist
 (Demorest ea 2010, Antoniadis ea 2013)
 \(\Rightarrow\) equation of state (EOS) for NS has to be **stiff**
 2. Typical total mass of compact binary neutron stars
 \(\Rightarrow\) \(\sim 2.73\pm0.15\) solar mass (by Pulsar timing obs.)
Mass-radius relation for various EOS

- Strong constraint = EOS is stiff.
- Radius is still unconstrained
Compact NS-NS system in our galaxy

Total Mass of NS in compact NS-NS is likely to be in a narrow range, $m \approx 2.73 \pm 0.15 \, M_{\text{sun}}$

<table>
<thead>
<tr>
<th>PSR</th>
<th>P(day)</th>
<th>e</th>
<th>$M(M_{\text{sun}})$</th>
<th>M_1</th>
<th>M_2</th>
<th>T_{GW}</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1913+16</td>
<td>0.323</td>
<td>0.617</td>
<td>2.828</td>
<td>1.441</td>
<td>1.387</td>
<td>3.0</td>
</tr>
<tr>
<td>B1534+12</td>
<td>0.421</td>
<td>0.274</td>
<td>2.678</td>
<td>1.333</td>
<td>1.345</td>
<td>27</td>
</tr>
<tr>
<td>B2127+11C</td>
<td>0.335</td>
<td>0.681</td>
<td>2.71</td>
<td>1.35</td>
<td>1.36</td>
<td>2.2</td>
</tr>
<tr>
<td>J0737-3039</td>
<td>0.102</td>
<td>0.088</td>
<td>2.58</td>
<td>1.34</td>
<td>1.25</td>
<td>0.86</td>
</tr>
<tr>
<td>J1756-2251</td>
<td>0.32</td>
<td>0.18</td>
<td>2.57</td>
<td>1.34</td>
<td>1.23</td>
<td>17</td>
</tr>
<tr>
<td>J1906+746</td>
<td>0.166</td>
<td>0.085</td>
<td>2.61</td>
<td>1.29</td>
<td>1.32</td>
<td>3.1</td>
</tr>
<tr>
<td>J1913+1102</td>
<td>0.206</td>
<td>0.090</td>
<td>2.875</td>
<td>1.65</td>
<td>1.24</td>
<td>~5</td>
</tr>
<tr>
<td>A24</td>
<td>0.184</td>
<td>0.606</td>
<td>2.74</td>
<td>1.35</td>
<td>1.39</td>
<td>~0.75 $\times 10^8$ yrs</td>
</tr>
</tbody>
</table>
II A Typical scenarios for NS-NS merger

• **Constraints from radio-telescope observations:**
 1. Approximately 2-solar-mass NSs exist
 (Demorest ea 2010, Antoniadis ea 2013)
 → equation of state (EOS) for NS has to be **stiff**
 2. Typical total mass of compact binary neutron stars
 → ~ 2.73±0.15 solar mass (by Pulsar timing obs.)

• **Numerical relativity simulations have shown that**
 ➢ Merger results typically in **high-mass neutron stars**
 (not BH) (Shibata et al. 2005, 2006.. recently many works….).
Possible outcomes of NS-NS mergers

Likely typical cases for $M = 2.6–2.8M_{\text{sun}}$

$M_{\text{thr}} > \sim 2.8M_{\text{sun}}$

Depends strongly on EOS
Mass ejection history for MNS formation

Time after merger

0 10 100 1000 ms

Dynamical ejection (Sec. III)
(determined by dynamical timescale of NS)

MHD/viscous ejection (Sec. IV)
(by viscous timescale of remnant MNS)

Long-term viscous ejection (V)
(by viscous timescale of disk)

Neutrino irradiation (for neutrino emission timescale)
(minor effects but could play an assist)

Recombination
(Fernandez-Metzger ‘13)
II B Scenarios for BH-NS merger

• Almost no observational constraints but for black hole mass likely $\sim 5M_{\text{sun}}$
 \Rightarrow Wide parameter space has to be explored

• Fate = two possibilities:
 1. Tidal disruption of NS
 2. Simple plunge of NS into BH
Condition for tidal disruption

For tidal disruption, \((\text{Self gravity of NS}) < (\text{BH tidal force}) \)

\[
\frac{M_{NS}}{(\alpha R_{NS})^2} < \frac{M_{BH}(\alpha R_{NS})}{r^3} \quad (\alpha > 1) \Rightarrow 1 \leq \left(\frac{M_{BH}}{r_{ISCO}} \right)^3 \left(\frac{M_{NS}}{M_{BH}} \right)^2 \left(\frac{\alpha R_{NS}}{M_{NS}} \right)^3
\]

- For tidal disruption
 - Large NS Radius or
 - Small BH mass or
 - High corotation spin is necessary
For tidal disruption of plausible BH-NS with $M_{NS} = 1.35M_{\text{sun}}$, $R_{NS} \sim 12$ km, & $M_{BH} > 6 M_{\text{sun}}$

High BH spin is necessary $> \sim 0.5$

Foucart et al. (‘13,14,…); Kyutoku et al. (‘15)

$$1 \leq 0.1 \left(\frac{6M_{BH}}{r_{\text{ISCO}}} \right)^3 \left(\frac{7M_{NS}}{M_{BH}} \right)^2 \left(\frac{R_{NS}}{6M_{NS}} \right)^3 \left(\frac{\alpha}{1.7} \right)^3$$

$$\left(M_{BH} \leq r_{\text{ISCO}} \leq 9M_{BH} \right)$$

- Natural conclusion: BH-disk systems formed as a remnant should have a high BH spin
Mass ejection history for BH-NS
(in the presence of tidal disruption of NS)

Time after merger

0 10 100 1000 ms

Dynamical ejection (Sec. III)
(determined by dynamical timescale of system)

Long-term MHD/viscous ejection (Sec. V)
(by viscous timescale of disk)
(Fernandez-Metzger 13, Just+ 15,...)

Neutrino irradiation
(would be minor)
III Dynamical mass ejection
NS-NS: Neutrino-radiation hydro simulation

Soft EOS (SFHo, R~11.9 km): 1.30-1.40 M_{\odot}

Rest-mass density

0.007 [ms]

Neutrino luminosity

Orbital plane

Tidal torque

Total mass ~ 0.01 M_{\odot}

Sekiguchi et al. 2016
NS-NS: Neutrino-radiation hydro simulation

Stiff EOS (DD2, $R \sim 13.2$ km): 1.30-1.40 M_{sun}

Rest-mass density

Orbital plane

0.014 [ms]

Neutrino luminosity

Tidal torque

Total mass $\sim 10^{-3} M_{\text{solar}}$

Neutrino wind

Sekiguchi et al. 2016
Ejecta mass depends on EOS: NS-NS case

Soft EOS \rightarrow strong gravity \rightarrow SHOCK \rightarrow high-mass ejection

Total mass = 2.7 solar mass
Error bar for $1 < Q < 1.25$

Steiner
Mass ratio

Radius of 1.35 solar mass NS

Hotokezaka+ PRD ‘13 (See also Bauswein+ ’13; Bernuzzi + ‘15)
Summary for dynamical ejecta in NR

Ejecta mass depends significantly on NS EOS & mass

<table>
<thead>
<tr>
<th></th>
<th>Nearly equal mass (M_{\text{tot}} \sim 2.7 M_{\text{sun}})</th>
<th>Unequal mass: (m_1/m_2 < 0.9) (M_{\text{tot}} \sim 2.7 M_{\text{sun}})</th>
<th>Small total mass system (< 2.6 M_{\text{sun}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft EOS ((R=11-12 \text{ km}))</td>
<td>(\text{HMNS} \rightarrow \text{BH}) (M_{\text{eje}} \sim 10^{-2} M_{\text{sun}})</td>
<td>(\text{HMNS} \rightarrow \text{BH}) (M_{\text{eje}} \sim 10^{-2} M_{\text{sun}})</td>
<td>(\text{MNS (long lived)}) (M_{\text{eje}} \sim 10^{-3} M_{\text{sun}})</td>
</tr>
<tr>
<td>Stiff EOS ((R=13-15 \text{ km}))</td>
<td>(\text{MNS (long lived)}) (M_{\text{eje}} \sim 10^{-3} M_{\text{sun}})</td>
<td>(\text{MNS (long lived)}) (M_{\text{eje}} \sim 10^{-2.5} M_{\text{sun}})</td>
<td>(\text{MNS (long lived)}) (M_{\text{eje}} \sim 10^{-3} M_{\text{sun}})</td>
</tr>
</tbody>
</table>

- Typical velocity: \(0.15—0.25 \text{ c}\)

Foucart et al ’16
Shibata unpublished
Sekighichi+ ‘17
High temperature $\Rightarrow \gamma \gamma \rightarrow e^- + e^+$, $n + e^+ \rightarrow p + \bar{\nu}_e$

Neutrino irradiation $\Rightarrow n + \nu \rightarrow p + e^-$

Electron fraction (x-y)

Neutrino luminosity

Electron fraction (x-z)

Green = neutron rich

Sekiguchi et al. (2016)
Electron fraction profile: **Broad**

Sekiguchi et al. 2015 PRD

- Average depends on EOS but **typically peak at 0.2—0.3**
- **Broad distribution** irrespective of EOS
- Similar results by Radice+16, Lehner+15,16
Neutrino-radiation hydrodynamics simulation
SFHo ($R \approx 11.9$ km): $1.25-1.55 \, M_{\text{sun}}$

$0.002 \, [\text{ms}]$

Y_e

More neutron-rich except for disk surrounding BH

Green = neutron rich

Sekiguchi et al. (2017 hopefully)
Electron fraction distribution:
Broad irrespective of EOS and mass

→ Good for producing a variety of r-elements

Asymmetric binary

Soft EOS

Stiff EOS

Electron fraction distribution

See also Radice ‘16
Neutrino irradiation from MNS increases

- the ejecta mass by ~0.001 solar mass
- Average value of Y_e by ~0.03
- Note that neutrino luminosity decreases in ~100 ms

See also, Perego et al. 2014; Goriely et al. 2015; Martin et al. 2015; Foucart et al. 2016
BH-NS merger (SFHo EOS: density)

\[M_{\text{BH}} = 5.4 M_{\odot}, \quad M_{\text{NS}} = 1.35 M_{\odot}, \quad a_{\text{BH}} = 0.75 \]

Mass ejection occurs by tidal force of BH

Kyutoku et al. hopefully 2017
BH-NS with NS mass $1.35M_{\text{sun}}$

Data: Kyutoku et al. 2015

High BH spin is important for mass ejection

Soft EOS results in $M_{\text{ejecta}} < \sim 0.01 M_{\text{sun}}$

Stiff EOS results in high mass $> 0.01 M_{\text{sun}}$

$M_{\text{NS}}=1.35$ solar mass

$M_{\text{BH}}=9.45, a=0.75$

$M_{\text{BH}}=9.45, a=0.50$

$M_{\text{BH}}=6.75, a=0.50$

Radius of 1.35 solar mass NS

High BH spin is important for mass ejection
BH-NS merger (SFHo EOS: electron frac)\n\[M_{\text{BH}} = 5.4 M_{\odot}, \ M_{\text{NS}} = 1.35 M_{\odot}, \ a_{\text{BH}} = 0.75 \]

Very neutron rich $Y_e \sim 0.1$

Kyutoku et al. hopefully 2017
• Quite low electron fraction irrespective of EOS (Foucart et al., ‘13, 14, 15…, Kyutoku+ hopefully ‘17)
• Likely to primarily produce heavy r-elements
Dynamical ejecta properties in NR

◆ Mass:
 - **NS-NS**: $\sim 10^{-3} - 0.02 \, M_{\text{sun}}$ depending on each mass & EOS: Soft EOS & $\sim 2.7 \, M_{\text{sun}}$ is favorable (Hotoke+ 13, Sekiguchi+ 15, 16, Radice+ 16, Lehner+ 15, 16)
 - **BH-NS**: 0—0.1 M_{sun}: Stiff EOS is favorable; high BH spin is also the key (Foucart+ ’13-15, Kyutoku+15):
 - $M_{\text{eject}} \sim 0.2—0.5 \, M_{\text{disk}}$

◆ Electron fraction
 - **NS-NS**: Broad distribution of Y_e with average $<Y_e> \sim 0.2—0.3$: For asymmetric case, $<Y_e>$ could be < 0.2
 - **BH-NS**: Peak at $Y_e < 0.1$ (Foucart+ ’13-15, Kyutoku+ ‘17)

◆ Typical velocity: 0.15—0.25 c; max could be ~ 0.8 c
IV Early Viscous/MHD ejecta for NS-NS

• MHD/viscous effects are likely to play a role (Fernandez-Metzger+ ‘13—15, Just et al. ‘15 ….)

• But, previous simulations are studied only for torus surrounding BH (or very artificial NS)

• Realistic remnants = MNS + torus, for which no well-resolved MHD or viscous simulations

• MNS of differential rotation has potential for mass ejection
Physical state for the merger remnants

- Remnant MNS are *magnetized & differentially rotating* → subject to MHD instabilities
- MHD simulations (e.g., Price & Rosswog, ‘07, Kiuchi et al. ‘14, ‘15) suggest that magnetic fields would be significantly amplified by Kelvin-Helmholtz instability → turbulence may be induced
High-resolution GRMHD for NS-NS

\[\Delta x = 17.5 \text{ m} \]

Kuichi et al. 2015

\[\tau_{KH} \propto \Delta x \]

Kelvin-Helmholtz instability:

\(\Rightarrow \) Magnetic field should be amplified by winding

\(\Rightarrow \) Quick angular momentum transport? (not yet seen)
Magnetic energy: Resolution dependence

B field would be amplified in $\Delta t << 1$ ms → turbulence?

Still NOT convergent...

Purely hydrodynamics or radiation hydrodynamics is not likely to be appropriate for this problem

$$\tau_{KH} \propto \Delta \chi$$

$B_{\text{max}} = 10^{13}$ G

$p_{\text{max}} = 10^{13}$ ergs

Kiuch et al. 2015
Shear motion at the merger

→ huge number of vortexes are formed and magnetic field is quickly amplified

→ further shear motion → turbulence

→ turbulent (effectively global) viscosity
For post-merger dynamics,

- Obviously **more resolved MHD simulation** is needed
 → But it is not feasible due to the restriction of the computational resources (in future we have to do)
- **One alternative for exploring the possibilities is viscous hydrodynamics** (Radice ‘17, Shibata et al. ‘17)

✓ Note that we do not know whether viscous hydrodynamics can precisely describe turbulence fluid
Viscous neutrino radiation hydrodynamics for post-merger MNS (S. Fujibayashi et al. in preparation)

Employ covariant & causal GR viscous hydro (Israel & Steward)

Initial condition: Merger remnant of $1.35 - 1.35 M_{\text{sun}}$ NS-NS

Alpha viscosity: $\nu = \alpha_v c_s^2 \Omega^{-1}$ with $\alpha_v = 0.01$

EOS: DD2 ($R_{\text{NS}} = 13.2$ km)

\Rightarrow Dynamical ejecta mass $\sim 0.001 M_{\text{sun}}$

Wide 1500×1500 km

300×300 km

Density in x-z plane
Evolution of angular velocity

Fujibayashi et al. in preparation

Play a role in the late-time viscous ejection

Relax to uniform rotation in viscous timescale ~ 10 ms

Kinetic energy of $\sim 10^{52}$ erg is released \rightarrow early viscous ejection
Ejecta mass and Y_e distribution

$t < 10 - 20$ ms: Differential rotation of MNS \rightarrow rigid rotation \rightarrow viscous heating \rightarrow ejecta of mass $> 10^{-2.5} M_{\text{sun}}$

Fujibayashi et al. in prep.

$Y_e > ~0.25$

This depends on initial condition
Viscous hydrodynamics for post-merger MNS
(S. Fujibayashi et al. in preparation)

Electron fraction

Wide 1500×1500 km
300×300 km
Dynamical + MHD/viscous ejecta in NR

Total ejecta mass could be \(\sim 0.01 \, M_{\text{sun}} \) or more

<table>
<thead>
<tr>
<th></th>
<th>Nearly equal mass ((M_{\text{tot}} \sim 2.7M_{\text{sun}}))</th>
<th>Unequal mass: (m_1/m_2 < 0.9) ((M_{\text{tot}} \sim 2.7M_{\text{sun}}))</th>
<th>Small total mass system ((< 2.6M_{\text{sun}}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft EOS ((R=11-12, \text{km}))</td>
<td>MNS (\rightarrow) BH (M_{\text{eje}} \sim 10^{-2} , M_{\text{sun}})</td>
<td>MNS (\rightarrow) BH (M_{\text{eje}} \sim 10^{-2} , M_{\text{sun}})</td>
<td>MNS (long lived) (M_{\text{eje}} \sim) ??</td>
</tr>
<tr>
<td>Stiff EOS ((R=13-15, \text{km}))</td>
<td>MNS (long lived) (M_{\text{eje}} \sim 10^{-2} , M_{\text{sun}})</td>
<td>MNS (long lived) (M_{\text{eje}} \sim 10^{-2} , M_{\text{sun}})</td>
<td>MNS (long lived) (M_{\text{eje}} \sim) ??</td>
</tr>
</tbody>
</table>

- \(<Y_e> \sim 0.2—0.3\) (likely)
- \(Y_e\) has a wide distribution \(\rightarrow\) Good for nucleo-synthesis

To be studied
V Long-term viscous disk wind

- Studies have been done mostly for BH-disk systems (Fernandez-Metzger, ‘13-15, Just+ ’15, Siegel-Metzger ’17; Natural model for BH-NS merger)
 - 10—20% of mass of disk surrounding a spinning BH is likely to be ejected by viscous ejection
 - Due to Y_e freeze-out in the absence of strong neutrino sources, low Y_e matter could be ejected
Basic Picture
(Fernandez-Metzger ’13,14, Just ’15, ……)

- Neutrino irradiated ejection → Y_e is increased
 (weak effect for BH-NS)

- Viscous ejection of mass 10—20% of torus mass
 Y_e freeze out → Low Y_e is preserved (good r-process)
Concern

✓ Initial disk model is rather artificial, in particular,
 • $j=\text{const}$ angular momentum distribution is often used, but it’s unphysical, and in this case, torus becomes geometrically thick leading to easy ejection:

\[
\begin{align*}
\text{j=const torus} & \quad \text{High entropy} \\
\downarrow & \\
\text{Overestimated mass ejection?} & \quad \text{Overestimated neutrino heating?}
\end{align*}
\]

~ Kepler disk

More realistic
Throughout mass ejection of BH-NS merger

- For tidal disruption of NS, high BH spin is necessary → remnant should be high-spin BH + disk
 - Dynamical ejecta: $M_{\text{eject}} \sim 0.2–0.5M_{\text{disk}}$ (e.g., Kyutoku+ ’15)
 - Viscous ejecta from disk could be $\sim 0.1–0.2 M_{\text{disk}}$
 → Comparable to dynamical ejecta
 - Dynamical ejecta has small $Y_e < 0.1$ (e.g., Forcart+, ‘14)
 - Viscous ejecta is also likely to give $Y_e \sim 0.1–0.2$
 because of the absence of strong neutrino sources and resulting freeze-out effect
 (Fernandez-Metzger ’13, 14, Just + ’15, Siegel-Metzger ’17)

→ Likely to be a strong site for the r-process nucleosyn.

Conclusion seems to be robust
Long-term viscous disk wind: NS-NS case

- Remnant MNS-disk systems have been studied only with artificial treatments of MNS
 - The presence of a strong neutrino emitter like MNS would change Y_e significantly (Metzger-Fernandez ‘13, Perego+ ’14, Fujibayashi+ ‘17)

 ✓ Caution:
 - Luminosity of MNS decreases with time
 - Low-Y_e disk initial condition may not be realistic for MNS-disk system
 - Need more realistic studies from NR merger simulation
IV Summary

◆ **NS-NS:**

 • Dynamical + subsequent short-term MHD/viscous ejection are likely to provide ejecta mass of $> 0.01 \, M_{\odot}$ irrespective of EOS and each mass of binary

 • Y_e is mildly low & broadly distributed: good

 • Long-term evolution of post-merger MNS-torus: ???

◆ **BH-NS:** likely robust conclusion

 • Dynamical ejection could provide $0.01 - 0.1 \, M_{\odot}$, in the case of TD and resulting Y_e is low < 0.1

 • Post-merger BH-torus could also eject mass 20—50% of disk mass by viscous effect $\Rightarrow M_{\text{eje}} > \sim 0.01 \, M_{\odot}$: Y_e could also be mildly low $\sim 0.1 - 0.2$