Particle Spectroscopy of Unbound States for Nuclear Astrophysics

Jeff Blackmon
Louisiana State University

- Reaction rates for novae, X-ray bursts & supernovae
- Γ_p: (p,γ) & (p,α) rates via the (d,n) and (d,p) reactions
 - $^{18}\text{F}(p,\alpha)^{15}\text{O}$ (*Adekola et al.*)
 - $^{26}\text{Al}(p,\gamma)^{27}\text{Si}$ (*Pain et al.*)
 - N=Z: the future: ^{30}P (*Pain et al.*)
 - $^{19}\text{Ne}(p,\gamma)^{20}\text{Na}$ (*Belarge et al.*)
 - $^{17}\text{F}(p,\gamma)^{18}\text{Ne}$ (*Kuvin et al.*)

- Γ_{α}: (α,p) reaction rates
 - The SE-SPS
 - $^{15}\text{N}(\alpha,\gamma)^{19}\text{F}$ and $^{15}\text{O}(\alpha,\gamma)^{19}\text{Ne}$
 - $^{14}\text{O}(\alpha,p)^{18}\text{Ne}$ and ^{18}Ne: ^{18}O symmetry

- Concluding remarks
Explosions in proton-rich environments

- Cataclysmic binaries
 - Novae
 - X-ray bursts
- Certain nuclear reactions (on p-rich nuclei) influence observables

Model of GS1826-24

- Proton-rich ejecta of core-collapse supernovae may contribute to intermediate mass elements

Müller, Janka et al.
Reaction rates and resonances

- Hydrogen and helium induced reactions are dominated by resonances near threshold
- Direct measurements are challenging
- Easier: indirectly determine resonance properties
 - E_r, J^π, Γ_p, Γ_α, Γ_γ
 - Reaction theory!

$\langle \sigma \nu \rangle = \sqrt{\frac{8}{\pi \mu}} (kT)^{3/2} \int_0^\infty \sigma E e^{-E/(kT)} dE$

States near p threshold are narrow
Branching ratios are observable!

$\Gamma_p > (\Gamma_\alpha$ or Γ_γ)

$\Gamma_\gamma > \Gamma_p$

$\theta_\alpha^2 << 1$

Some narrow states

$X+\alpha$ \rightarrow $E1$

$Y+p$ \rightarrow Z

Direct capture
$^{18}\text{F}(p,\alpha)^{15}\text{O}$ & Novae

- $^{17}\text{F}(p,\gamma)^{18}\text{Ne}$ and $^{18}\text{F}(p,\alpha)^{15}\text{O}$ determine 511 keV gamma production from novae that contribute to diffuse sources.

![Diagram showing nuclear reactions and energy levels.](image.png)
Use $^{18}\text{F}(d,n)^{19}\text{Ne}$ reaction to populate the states of interest in ^{19}Ne

$^{18}\text{F}(d,p)^{19}\text{F}$ simultaneously measured

Do not detect the neutrons/protons!

Detect $^{15}\text{O}/^{15}\text{N}$ and α in coincidence from $^{19}\text{Ne}/^{19}\text{F}$ breakup

Kinematics of angle and excitation energy reconstructed

Six position sensitive silicon-strip detectors covering $\theta_{\text{lab}} \sim 2^\circ - 17^\circ$

716 μg/cm2

CD$_2$

150 MeV

2x106 pps

$^{19}\text{Z}^*$

^{15}Z

n,p

Adekola et al., PRC 83, 84, 85 (2011-12).
$^{18}\text{F}(d,n)^{19}\text{Ne} \rightarrow ^{15}\text{O} + \alpha$ & $^{18}\text{F}(d,p)^{19}\text{F} \rightarrow ^{15}\text{N} + \alpha$

Simultaneous mirror measurements

<table>
<thead>
<tr>
<th>^{19}F</th>
<th>^{19}Ne</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_x (keV)</td>
<td>ℓ</td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>6331</td>
<td>2</td>
</tr>
<tr>
<td>6255/6497/6528</td>
<td>0</td>
</tr>
<tr>
<td>6787</td>
<td>1</td>
</tr>
<tr>
<td>7262/7364</td>
<td>0</td>
</tr>
</tbody>
</table>

Efficiency complicated

Definitive mirror assignments still often not clear

Reaction models to the continuum

Interference between levels
$^{26}\text{Al}(p,\gamma)^{27}\text{Si}$ and Galactic ^{26}Al

<table>
<thead>
<tr>
<th>E_x (keV)</th>
<th>E_{res} (keV)</th>
<th>J^π</th>
<th>$\omega\gamma$ (meV)</th>
<th>$^{27}\text{Al} E_x$ (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7469</td>
<td>6</td>
<td>(1/2, 5/2)$^+$</td>
<td>$< 2.3 \times 10^{-66}$</td>
<td>7676 (7799)</td>
</tr>
<tr>
<td>(7491)</td>
<td>(28)</td>
<td>(3/2)$^+$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7532</td>
<td>69</td>
<td>5/2$^+$</td>
<td>$< 2.3 \times 10^{-13}$</td>
<td>7790 (7790)</td>
</tr>
<tr>
<td>(7557)b</td>
<td>(94)</td>
<td>(3/2)$^+$</td>
<td>$< 1.9 \times 10^{-10}$</td>
<td>7858 (7858)</td>
</tr>
<tr>
<td>7590</td>
<td>127</td>
<td>9/2$^+$</td>
<td>$< 5.9 \times 10^{-6}$</td>
<td>7807 (7807)</td>
</tr>
<tr>
<td>7652</td>
<td>189</td>
<td>11/2$^+$</td>
<td>0.055(9) [4], 0.035(7) [5]</td>
<td>7950</td>
</tr>
<tr>
<td>7694</td>
<td>231</td>
<td>5/2$^+$</td>
<td>≤ 0.010 [4]</td>
<td>7722</td>
</tr>
<tr>
<td>7704</td>
<td>241</td>
<td>7/2$^-$</td>
<td>0.010(5) [4]</td>
<td>7900</td>
</tr>
<tr>
<td>7739</td>
<td>276</td>
<td>9/2$^+$</td>
<td>3.8(10) [6], 2.9(3) [4]</td>
<td>7998</td>
</tr>
</tbody>
</table>

- **Measured**
- **Unmeasured**

- **ell=2**
- **ell=0**

- **Strengths of 69 and 127 keV resonances major uncertainty in $^{26}\text{Al}(p,\gamma)^{27}\text{Si}$ rate**

Diagram:
- ONe novae
- Orion
- Cygnus
- AGB + WR stars

Legend:
- $^{26}\text{Al} + p$ Q = 7463
- ^{27}Si
$^{26}\text{Al}(d,p)^{27}\text{Al}$ to Mirror States

- 117 MeV ^{26}Al
- 5x106 pps
- 150 μg/cm2 CD$_2$
- MCP normalization (200 kHz)
Neutron spectroscopic factors in ^{27}Al

$7805(12)$ keV (127-keV mirror)

FWHM
72 keV (CoM)

<table>
<thead>
<tr>
<th>J^π</th>
<th>E_x (keV)</th>
<th>$C^2 S_v^{\text{exp}}$</th>
<th>$C^2 S_v^{\text{th}}$</th>
<th>$C^2 S_{th}^{\text{th}}$</th>
<th>$C^2 S_{\pi}^{\text{th}}$</th>
<th>Γ_{sp} (meV)</th>
<th>Γ_{p} (meV)</th>
<th>$\omega \gamma$ (meV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$9/2^+$</td>
<td>7807</td>
<td>0.0102 ± 0.0021</td>
<td>$0.0112^{+0.0002}_{-0.0007}$</td>
<td>$0.0094^{+0.0002}_{-0.0004}$</td>
<td>$0.0085^{+0.0024}_{-0.0031}$</td>
<td>6.70×10^{-3}</td>
<td>$5.7^{+1.6}_{-2.1} \times 10^{-5}$</td>
<td>$2.6^{+0.7}_{-0.9} \times 10^{-5}$</td>
</tr>
<tr>
<td>$5/2^+$</td>
<td>7790</td>
<td>≤ 0.061</td>
<td>$0.0100^{+0.0006}_{-0.0002}$</td>
<td>$0.0088^{+0.0019}_{-0.0022}$</td>
<td>≤ 0.054</td>
<td>2.06×10^{-10}</td>
<td>$\leq 1.1 \times 10^{-11}$</td>
<td>$\leq 3.0 \times 10^{-12}$</td>
</tr>
</tbody>
</table>

aFrom SMEC calculations using the USD-b effective interaction, using a continuum coupling constant of -650 MeV fm3.

⇒ Quantifying uncertainties in reaction models and mirror symmetry?
$^{30}P(d,p\gamma)^{31}P$ with GODDESS

- $^{30}P(p,\gamma)^{31}S$: Most important reaction for understanding enrichment of S and heavier elements in nova ejecta
- Large uncertainty but high level density and only a few resonances will likely contribute
- Proton singles and $p\gamma$ coincidences with $^{30}P(d,p\gamma)$ and GODDESS?
- Limitations from reaction model and mirror symmetry?

How good is this picture?
\(^{15}\text{O}(\alpha,\gamma)^{19}\text{Ne}(p,\gamma)^{20}\text{Na}\)

- \(^{15}\text{O}(\alpha,\gamma)^{19}\text{Ne}\) reaction is a limiting reaction for CNO breakout
- \(^{19}\text{Ne}(p,\gamma)^{20}\text{Na}\) reaction should be much faster than \(^{15}\text{O}(\alpha,\gamma)^{19}\text{Ne}\)
- Spin assignments of states in \(^{20}\text{Na}\) are not clear
- Uncertainty in \(^{19}\text{Ne}(p,\gamma)^{20}\text{Na}\) rate is large

Our approach:

- Forget about the low energy neutron
- Detect \(^{19}\text{Ne}\) and \(p\) with high spatial and energy resolution

\[^{2}\text{H}(^{19}\text{Ne},n) \rightarrow ^{20}\text{Na}^* \]
$^{19}\text{Ne}(d,n)^{20}\text{Na} \rightarrow ^{19}\text{Ne} + p$ Approach

- Protons detected in silicon-strip array

- Beam and recoiling heavy ions detected in position-sensitive, gas ionization detector

Results from $^{12}\text{C}(p,p)$ test experiment

IC position gated on Si
$^{19}\text{Ne}(d,n)^{20}\text{Na} \rightarrow ^{19}\text{Ne} \pm p$ Results

- Reconstructed E_{cm} spectrum and angular distributions
- 2.65 MeV state has equal decay branching to g.s. and $\frac{5}{2}^{+}$
- Thermal population of the first-excited ^{19}Ne state contributes to the $^{19}\text{Ne}(p,\gamma)$ reaction rate
$^{19}\text{Ne}(p, \gamma)^{20}\text{Na}$ Reaction Rate

- With J^π established, it is hard to reconcile direct (p, γ) limits with lifetime measurements in the mirror ^{20}F.

Couder et al., PRC (2004): $\omega_{440} < 15$ meV

Lifetime measurements $\rightarrow \omega_{440} = 74$ meV

- Using Γ_γ from mirror and reactions on the excited state increases the reaction rate significantly more than already expected.

Belarge et al., PRL 117 (2016)
$^{17}\text{F}(p,\gamma)^{18}\text{Ne}$

- Most important resonance directly measured
- Largest uncertainty is direct capture

Chipps et al., PRL (2009)

$\omega\gamma = 33 \pm 14_{\text{stat}} \text{ meV}$

- Need new approach for bound(ish) states
$^{17}\text{F}(d,n)$ using RESONEUT

$^{17}\text{F}(p,\gamma)^{18}\text{Ne}$ reaction rate
S. Kuvin et al.

ResoNeut = P-Terphenyl + Planacon PMT
$^{17}\text{F}(d,n)^{18}\text{Ne}$ data

- Good neutron TOF resolution
- Proton unbound states agree with HRIBF measurements
- Bound states are observed above background allowing ANC\(_s\) to be extracted
Asymptotic Normalization Coefficients (ANCs) allow accurate determination of the direct capture cross section.

We find the ANC to be in good agreement with those in the ^{18}O mirror.

Uncertainties in the reaction rate significantly reduced at nova and X-ray burst temperatures.

\[F(p, \gamma)^{18}\text{Ne} \]
SE-SPS at FSU

- Former Yale large-acceptance Enge SPS now being installed at Fox Superconducting Accelerator Laboratory at FSU
- Experiments starting this year!
(α,p) reaction rates & X-ray bursts

- (α,p) reactions on $T_z=\pm 1$ nuclei are important reactions in X-ray bursts
- Uncertainties dominated by alpha widths of resonances
- We will measure alpha decay branching ratios with Enge+SABRE
- Mirror reactions on stable nuclei, e.g. ($^6\text{Li},d$) and (α,α) – but is it meaningful?
Alpha spectroscopic factors in 19F:19Ne

- ~10x discrepancy in alpha spectroscopic factors for mirror states of astrophysical importance?

19F wavefunctions?

- 12C \otimes 7Li
- 11B \otimes 8Be
- 14N \otimes 5He
- 15N \otimes 4He

“One can see that the disagreement exceeds one order of magnitude.”

de Oliveira et al., PRC 55 (1997)

<table>
<thead>
<tr>
<th>$E_x(^{19}$F) (MeV)</th>
<th>$E_x(^{19}$Ne) (MeV)</th>
<th>J^π</th>
<th>Γ_γ (meV)</th>
<th>$B_\alpha(^{19}$Ne)b (meV)</th>
<th>$\Gamma_\alpha(^{19}$Ne) (meV)</th>
<th>$\theta_\alpha(^{19}$Ne)c ($\times 10^{-2}$)</th>
<th>$\theta_\alpha(^{19}$F)d ($\times 10^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.378</td>
<td>4.379</td>
<td>$(7/2)^+$</td>
<td>> 60</td>
<td>0.044 ± 0.032</td>
<td>> 2.8</td>
<td>> 7.8</td>
<td>0.56</td>
</tr>
<tr>
<td>4.550</td>
<td>4.600</td>
<td>$(5/2)^+$</td>
<td>101 ± 55</td>
<td>0.25 ± 0.04</td>
<td>33 ± 18</td>
<td>3.2</td>
<td>4–8</td>
</tr>
<tr>
<td>4.556</td>
<td>4.549</td>
<td>$(3/2)^-$</td>
<td>38$^{+23}_{-19}$</td>
<td>0.07 ± 0.03</td>
<td>2.9$^{+1.7}_{-1.4}$</td>
<td>0.06</td>
<td>0.84</td>
</tr>
<tr>
<td>4.683</td>
<td>4.712</td>
<td>$(5/2)^-$</td>
<td>43 ± 8</td>
<td>0.82 ± 0.15</td>
<td>195 ± 36</td>
<td>0.67</td>
<td>1.5–2.4</td>
</tr>
<tr>
<td>5.107</td>
<td>5.092</td>
<td>$(5/2)^+$</td>
<td>> 22</td>
<td>0.90 ± 0.09</td>
<td>> 200</td>
<td>> 0.19</td>
<td>0.033–0.33</td>
</tr>
</tbody>
</table>

$^1_2\sigma$
Maybe not as bad as it appears?

\[^{15}\text{N}(^{7}\text{Li},t)^{19}\text{F}\] \text{ de Oliveira et al., NPA 597 (1996)}

- 4.550 and 4.556 states not resolved
- Dominated by 4.550 strength – but to what degree?
- Only weak constraints on 4.556 level

\[E_x = 4.550 + 4.556\text{MeV}\]
\[S = 0.09\]
α cluster states in 18O

14C(6Li,d)

Consolo et al., PRC 24 (2016).

14C(α,α)

Avila et al., PRC 90 (2016).
α widths in 18Ne

17F(p,α)14O

Blackmon et al., NPA 688 (2001)
Harss et al., PRL 82 (1999)

14O(α,p)17F

Kim et al., PRC 92 (2015)

16O(3He,n)18Ne→14O+α

Almaraz-Caldaron et al., PRC 86 (2012)
18O:18Ne Comparison?

14O(α,p)

<table>
<thead>
<tr>
<th>Eₓ</th>
<th>Γα (keV)</th>
<th>17F(p,α)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.35</td>
<td>1(-) 3.1 (2)</td>
<td>7.10 (1-) 0.30 (8)</td>
</tr>
<tr>
<td>7.60</td>
<td>0(+) 1.5 (5)</td>
<td>7.60 (1-, 2+, 3-) 0.5–1.2</td>
</tr>
<tr>
<td>7.72</td>
<td>2+, 3- 1.9 (3)</td>
<td></td>
</tr>
</tbody>
</table>

16O(3He,n)

| 8.10 | 0(+) 40 (5) | 8.09 (3-) 6 (4) |

- Probably the only state with a clear mirror assignment is 6.20 ↔ 6.15 (1-) level
- Most important resonance for 14O(α,p)17F
 2 eV from 14C(7Li,t)
 8 eV from 17F(p,α)
- Limitation of mirror symmetry?
Concluding remarks

- Reactions on proton-rich nuclei are important
 - \((p, \gamma)\)
 - \((\alpha, p)\)
 - \((n, p)\)

- Direct measurements are very difficult
 - Small cross sections
 - Low radioactive ion beam intensities

- Indirect approaches are crucial

- Reliable reaction models into the continuum are important
 - Often narrow states near threshold

- Mirror reactions are much easier experimentally
 - But how reliable are any comparisons?