Baryon Spectroscopy: Data Consistency and Model Discrimination

D.G. Ireland

INT Program INT-16-2a,
Bayesian Methods in Nuclear Physics,
June 13 - July 8, 2016
Introduction
Why Spectroscopy?

A spectrum reveals the underlying nature of the physical system.
Baryon Summary Table

Figure 1: Particle Data Group listing 2014 [1]

<table>
<thead>
<tr>
<th>Baryon</th>
<th>Charge</th>
<th>Mass (MeV)</th>
<th>Spin</th>
<th>Parity</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>$1/2^+$</td>
<td>$\Delta(1232)$</td>
<td>$3/2^+$</td>
<td>****</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>$1/2^+$</td>
<td>$\Delta(1600)$</td>
<td>$3/2^+$</td>
<td>****</td>
<td></td>
</tr>
<tr>
<td>$N(1440)$</td>
<td>$1/2^+$</td>
<td>$\Delta(1620)$</td>
<td>$1/2^-$</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>$N(1520)$</td>
<td>$3/2^-$</td>
<td>$\Delta(1700)$</td>
<td>$3/2^-$</td>
<td>****</td>
<td></td>
</tr>
<tr>
<td>$N(1535)$</td>
<td>$1/2^-$</td>
<td>$\Lambda(1670)$</td>
<td>$1/2^-$</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>$N(1650)$</td>
<td>$1/2^-$</td>
<td>$\Sigma(1385)$</td>
<td>$3/2^+$</td>
<td>****</td>
<td></td>
</tr>
<tr>
<td>$N(1675)$</td>
<td>$5/2^-$</td>
<td>$\Sigma(1480)$</td>
<td>$3/2^-$</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>$N(1680)$</td>
<td>$5/2^+$</td>
<td>$\Sigma(1560)$</td>
<td>$3/2^-$</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>$N(1685)$</td>
<td>$+$</td>
<td>$\Sigma(1580)$</td>
<td>$3/2^-$</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>$N(1700)$</td>
<td>$3/2^-$</td>
<td>$\Sigma(1620)$</td>
<td>$1/2^-$</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>$N(1710)$</td>
<td>$1/2^+$</td>
<td>$\Sigma(1660)$</td>
<td>$1/2^+$</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>$N(1720)$</td>
<td>$3/2^+$</td>
<td>$\Sigma(1730)$</td>
<td>$3/2^+$</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>$N(1860)$</td>
<td>$5/2^+$</td>
<td>$\Sigma(1840)$</td>
<td>$3/2^+$</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>$N(1875)$</td>
<td>$3/2^+$</td>
<td>$\Omega(1770)$</td>
<td>$3/2^+$</td>
<td>****</td>
<td></td>
</tr>
<tr>
<td>$N(1880)$</td>
<td>$1/2^+$</td>
<td>$\Omega(1775)$</td>
<td>$3/2^+$</td>
<td>****</td>
<td></td>
</tr>
<tr>
<td>$N(1895)$</td>
<td>$1/2^+$</td>
<td>$\Omega(1840)$</td>
<td>$3/2^+$</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>$N(1900)$</td>
<td>$7/2^+$</td>
<td>$\Omega(1880)$</td>
<td>$3/2^+$</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>$N(2000)$</td>
<td>$5/2^+$</td>
<td>$\Omega(1900)$</td>
<td>$3/2^+$</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>$N(2040)$</td>
<td>$3/2^+$</td>
<td>$\Omega(1915)$</td>
<td>$3/2^+$</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>$N(2060)$</td>
<td>$5/2^+$</td>
<td>$\Omega(1940)$</td>
<td>$3/2^+$</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>$N(2100)$</td>
<td>$1/2^+$</td>
<td>$\Omega(2000)$</td>
<td>$3/2^+$</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>$N(2120)$</td>
<td>$3/2^+$</td>
<td>$\Omega(2030)$</td>
<td>$3/2^+$</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>$N(2190)$</td>
<td>$7/2^+$</td>
<td>$\Omega(2070)$</td>
<td>$3/2^+$</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>$N(2220)$</td>
<td>$9/2^+$</td>
<td>$\Omega(2080)$</td>
<td>$3/2^+$</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>$N(2250)$</td>
<td>$9/2^+$</td>
<td>$\Omega(2100)$</td>
<td>$3/2^+$</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>$N(2300)$</td>
<td>$1/2^+$</td>
<td>$\Omega(2250)$</td>
<td>$3/2^+$</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>$N(2570)$</td>
<td>$5/2^-$</td>
<td>$\Omega(2620)$</td>
<td>$3/2^+$</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>$N(2600)$</td>
<td>$11/2^-$</td>
<td>$\Omega(2600)$</td>
<td>$3/2^+$</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>$N(2700)$</td>
<td>$13/2^+$</td>
<td>$\Omega(2600)$</td>
<td>$3/2^+$</td>
<td>**</td>
<td></td>
</tr>
</tbody>
</table>

References

Figure 2: Lattice QCD calculation of baryon spectrum. From [2]

- Both lattice- and quark model calculations predict more states than observed
Figure 3: Most resonance information is from partial wave analysis (PWA) of πN scattering
Resonance decays to other channels

Figure 4: Some resonances predicted to decay into strange channels [3].
Figure 5: Comparison of photoproduction channels
Figure 6: Energy dependence of cross section
Figure 7: Possible production scenario
\(\gamma p \rightarrow K\Lambda \) Kinematics

Figure 8: Taken from [4]. Kinematic variables are \(W \) (hadronic mass) and \(\theta_{c.m.} \) (scattering angle).
The transversity basis

Transversity amplitudes \(b_j \) \((j = 1, 2, 3, 4)\): quantization axis perpendicular to reaction plane and the linear photon polarizations \(J_x \) and \(J_y \)

\[
\begin{align*}
 b_1 & = y\langle +|J_y|+\rangle_y, \\
 b_2 & = y\langle -|J_y|−\rangle_y, \\
 b_3 & = y\langle +|J_x|−\rangle_y, \\
 b_4 & = y\langle −|J_x|+\rangle_y.
\end{align*}
\]

Normalized transversity amplitudes (NTA) \(a_j \) \((j = 1, 2, 3, 4)\)

\[
a_j \equiv \frac{b_j}{\sqrt{|b_1|^2 + |b_2|^2 + |b_3|^2 + |b_4|^2}},
\]

The \(a_j \) are functions of \(W \) (hadronic mass) and \(\theta_{\text{c.m.}} \) (scattering angle)
$\gamma p \rightarrow K\Lambda$ Reaction Amplitudes

<table>
<thead>
<tr>
<th>Type</th>
<th>Observable</th>
<th>Transversity representation</th>
<th>Helicity representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>σ</td>
<td>$</td>
<td>a_1</td>
</tr>
<tr>
<td></td>
<td>Σ</td>
<td>$</td>
<td>a_1</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>$</td>
<td>a_1</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>$</td>
<td>a_1</td>
</tr>
<tr>
<td>BT</td>
<td>E</td>
<td>$2\Re(a_1 a_3^* + a_2 a_4^*)$</td>
<td>$</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>$2\Im(a_1 a_3^* - a_2 a_4^*)$</td>
<td>$2\Re(h_1 h_2^* + h_3 h_4^*)$</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>$2\Im(a_1 a_3^* + a_2 a_4^*)$</td>
<td>$-2\Im(h_1 h_4^* + h_2 h_3^*)$</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>$-2\Re(a_1 a_3^* - a_2 a_4^*)$</td>
<td>$-2\Im(h_1 h_3^* - h_2 h_4^*)$</td>
</tr>
<tr>
<td>BR</td>
<td>C_x</td>
<td>$-2\Im(a_1 a_4^* - a_2 a_3^*)$</td>
<td>$2\Re(h_1 h_3^* + h_2 h_4^*)$</td>
</tr>
<tr>
<td></td>
<td>C_z</td>
<td>$2\Re(a_1 a_4^* + a_2 a_3^*)$</td>
<td>$</td>
</tr>
<tr>
<td></td>
<td>O_x</td>
<td>$2\Re(a_1 a_4^* - a_2 a_3^*)$</td>
<td>$-2\Im(h_1 h_2^* - h_3 h_4^*)$</td>
</tr>
<tr>
<td></td>
<td>O_z</td>
<td>$2\Im(a_1 a_4^* + a_2 a_3^*)$</td>
<td>$2\Im(h_1 h_4^* - h_2 h_3^*)$</td>
</tr>
<tr>
<td>TR</td>
<td>T_x</td>
<td>$2\Re(a_1 a_2^* - a_3 a_4^*)$</td>
<td>$-2\Re(h_1 h_4^* + h_2 h_3^*)$</td>
</tr>
<tr>
<td></td>
<td>T_z</td>
<td>$2\Im(a_1 a_2^* - a_3 a_4^*)$</td>
<td>$-2\Re(h_1 h_2^* - h_3 h_4^*)$</td>
</tr>
<tr>
<td></td>
<td>L_x</td>
<td>$-2\Im(a_1 a_2^* + a_3 a_4^*)$</td>
<td>$2\Re(h_1 h_3^* - h_2 h_4^*)$</td>
</tr>
<tr>
<td></td>
<td>L_z</td>
<td>$2\Re(a_1 a_2^* + a_3 a_4^*)$</td>
<td>$</td>
</tr>
</tbody>
</table>
\[\sigma_{Total} = \sigma_0 \left\{ 1 - P_L^\gamma P_T^T P_y^R \sin(\phi) \cos(2\phi) + \Sigma(-P_L^\gamma \cos(2\phi) + P_T^T P_y^R \sin(\phi)) \right\} \\
+ T(P_T^T \sin(\phi) - P_L^\gamma P_y^R \cos(2\phi)) + P(P_y^R - P_L^\gamma P_T^T \sin(\phi) \cos(2\phi)) \\
+ E(-P_C^\gamma P_L^T + P_L^\gamma P_T^T P_y^R \cos(\phi) \sin(2\phi)) + F(P_C^\gamma P_T^T \cos(\phi) + P_L^\gamma P_T^T P_y^R \sin(2\phi)) \\
- G(P_L^\gamma P_T^T \sin(2\phi) + P_L^\gamma P_T^T P_y^R \cos(\phi)) - H(P_L^\gamma P_T^T \cos(\phi) \sin(2\phi) - P_C^\gamma P_L^T P_y^R) \\
- C_x(P_C^\gamma P_x^R - P_L^\gamma P_T^T P_z^R \sin(\phi) \sin(2\phi)) - C_z(P_C^\gamma P_z^R + P_L^\gamma P_T^T P_x^R \sin(\phi) \sin(2\phi)) \\
- O_x(P_L^\gamma P_T^T \sin(2\phi) + P_C^\gamma P_T^T P_z^R \sin(\phi)) - O_z(P_L^\gamma P_T^T \sin(2\phi) - P_C^\gamma P_T^T P_x^R \sin(\phi)) \\
+ L_x(P_L^\gamma P_R^T + P_L^\gamma P_T^T P_z^R \cos(\phi) \cos(2\phi)) + L_z(P_L^\gamma P_T^T P_x^R \cos(\phi) \cos(2\phi)) \\
+ T_x(P_T^T P_x^R \cos(\phi) - P_L^\gamma P_L^T P_z^R \cos(2\phi)) + T_z(P_T^T P_z^R \cos(\phi) + P_L^\gamma P_T^T P_x^R \cos(2\phi)) \right\} \]

Figure 10: Cross section as a function of beam \((P_{C,L}^\gamma)\), target \((P_{L,T}^T)\) and recoil \((P_{x,y,z}^R)\) polarization
Usual process:

- Progress by fitting observables (cross sections, asymmetries) for several channels
- o(10000) data points in total
- \(\chi^2\) minimization, occasionally event-by-event maximum likelihood
- Different model frameworks (i.e. different theory groups) and different model content (choice of resonances, etc.)

Issues:

- How accurate do measurements require to be?
- How do we deal with measurements from different experiments?
Usual process:

- Progress by **fitting** observables (cross sections, asymmetries) for several channels

Issues:

- How accurate do measurements require to be?
- How do we deal with measurements from different experiments?
Usual process:

- Progress by **fitting** observables (cross sections, asymmetries) for several channels
- $o(10000)$ data points in total

Issues:

- How accurate do measurements require to be?
- How do we deal with measurements from different experiments?
Usual process:

- Progress by **fitting** observables (cross sections, asymmetries) for several channels
- $o(10000)$ data points in total
- χ^2 minimization, occasionally event-by-event maximum likelihood

Issues:
Usual process:

- Progress by fitting observables (cross sections, asymmetries) for several channels
- $o(10000)$ data points in total
- χ^2 minimization, occasionally event-by-event maximum likelihood
- Different model frameworks (i.e. different theory groups) and different model content (choice of resonances, etc.)

Issues:
Usual process:

- Progress by **fitting** observables (cross sections, asymmetries) for several channels
- $o(10000)$ data points in total
- χ^2 minimization, occasionally event-by-event **maximum likelihood**
- Different **model frameworks** (i.e. different theory groups) and different **model content** (choice of resonances, etc.)
- Amplitude analysis ideally

** Issues:**
Usual process:

- Progress by **fitting** observables (cross sections, asymmetries) for several channels
- \(o(10000)\) data points in total
- \(\chi^2\) minimization, occasionally event-by-event **maximum likelihood**
- Different **model frameworks** (i.e. different theory groups) and different **model content** (choice of resonances, etc.)
- Amplitude analysis ideally

Issues:

- How **accurate** do measurements require to be?
Usual process:

- Progress by fitting observables (cross sections, asymmetries) for several channels
- \(o(10000) \) data points in total
- \(\chi^2 \) minimization, occasionally event-by-event maximum likelihood
- Different model frameworks (i.e. different theory groups) and different model content (choice of resonances, etc.)
- Amplitude analysis ideally

Issues:

- How accurate do measurements require to be?
- How do we deal with measurements from different experiments?
Model Discrimination
Distinguishing Objects

- Resolve two objects
- Actual angular “distance”
- Instrumental resolution (aperture limit)
- **Rayleigh Criterion**: 1st diffraction minimum of object 1 ≤ distance to centre of object 2

Figure 11: Airy disk near Rayleigh Criterion.
Distinguishing Objects

Figure 12: Mapping between Amplitudes (X) and Observables (Y).
Model Discrimination from Cross Sections

\[\mathcal{A}[A, B] = \left| \frac{d\sigma}{d\Omega}(A) - \frac{d\sigma}{d\Omega}(B) \right| \left| \frac{d\sigma}{d\Omega}(A) + \frac{d\sigma}{d\Omega}(B) \right| \]

- Measure for difference between the c.s. predictions
- Example: BnGa2014-02 vs. RPR-2011 predictions for \(\gamma p \rightarrow K^+\Lambda \)
- Experimental resolution: \(\Delta\sigma = \left(\frac{\Delta d\sigma}{d\Omega} \right) / \frac{d\sigma}{d\Omega} \)
- \(\overline{\mathcal{A}}(\text{th}) \approx \Delta\sigma(\text{expt}) \)
- ArXiv: [5]
Model discrimination: distance in amplitude space

Measure to discriminate between two models for $p(\gamma, K^+)\Lambda$ in amplitude space?

- 4D-vector representation for NTA

 $$\mathbf{M}_1(s, t) = (a_1, a_2, a_3, a_4)^T$$

 vectors on a 3-sphere in \mathbb{C}^4 (unit 7-sphere in \mathbb{R}^8)

- Distance between two models

 $$D[\mathbf{M}_1, \mathbf{M}_2] = \arccos \text{Re} \left(\mathbf{M}_1^\dagger \cdot \mathbf{M}_2 \right)$$

- Dependence on arbitrary phase:

 $\mathbf{M}_2(\alpha'_4 = 0)$ and vary α_4 in $\mathbf{M}_1(\alpha_4 = 0)$ such that $D[\mathbf{M}_1, \mathbf{M}_2]$ is minimized
Figure 13: Distance measure in amplitude space for BnGa versus RPR-2011
Model discrimination: distance in amplitude space

- Blue line: random samples in NTA amplitude space
- $\mathcal{D}[\text{RPR-2011, RPR2011*}]$: Resolution required to hunt a resonance ($D_{13}(1900)$)
- $\mathcal{D}[\text{RPR-2011, Regge}]$: Resolution required to determine “the” background
- $\mathcal{D}[\text{RPR-2011, KM}]$: Resolution required to discriminate between RPR-2011 and Kaon-MAID
Extract $r_3 e^{i\delta_3}$ at $(W = 1.8 \text{ GeV}, \theta_{c.m.} = -0.1)$ from data

1. **Bootstrap**: M sets of data $\{A_i^j \pm \delta A_i^j, i = 1, ..., N\}, j = 1, ..., M$
2. χ^2 fit to extract amplitudes for each set of synthetic data
3. Histogram solutions in amplitude space
Extract $r_3 e^{i\delta_3^4}$ at $(W = 1.8 \text{ GeV}, \theta_{c.m.} = -0.1)$ from data

1. **Bootstrap**: M sets of data $\{A^i_j \pm \delta A^i_j, i = 1, \ldots, N\}, j = 1, \ldots, M$

2. χ^2 fit to extract amplitudes for each set of synthetic data

3. Histogram solutions in amplitude space

Red: accuracy = 0.1; Blue: accuracy = 0.01

(i) “mathematically complete set”: $\{A^\text{exp}_i\}_1 = \left\{ \frac{d\sigma}{d\Omega}, \Sigma, T, P, C_x, O_x, E, F \right\}$
Extract $r_3 e^{i\delta_3}$ at $(W = 1.8 \text{ GeV}, \theta_{c.m.} = -0.1)$ from data

1. **Bootstrap**: M sets of data $\{A_i^j \pm \delta A_i^j, i = 1, \ldots, N\}, j = 1, \ldots, M$

2. χ^2 fit to extract amplitudes for each set of synthetic data

3. Histogram solutions in amplitude space

Red: accuracy = 0.1; Blue: accuracy = 0.01

(i) “mathematically complete set”: $\{A_{i}^{\exp}\}_1 = \left\{ \frac{d\sigma}{d\Omega}, \Sigma, T, P, C_x, O_x, E, F \right\}$

(ii) $\{A_{i}^{\exp}\}_2 = \{A_{i}^{\exp}\}_1 + \{C_z, O_z, G\}$
Extract $r_3 e^{i\delta_3^4}$ at $(W = 1.8 \text{ GeV}, \theta_{c.m.} = -0.1)$ from data

1. **Bootstrap:** M sets of data $\{A_i^j \pm \delta A_i^j, i = 1, \ldots, N\}, j = 1, \ldots, M$
2. χ^2 fit to extract amplitudes for each set of synthetic data
3. Histogram solutions in amplitude space

Red: accuracy = 0.1; Blue: accuracy = 0.01

(i) “mathematically complete set”: $\{A_i^{\text{exp}}\}_1 = \left\{ \frac{d\sigma}{d\Omega}, \Sigma, T, P, C_x, O_x, E, F \right\}$
(ii) $\{A_i^{\text{exp}}\}_2 = \{A_i^{\text{exp}}\}_1 + \{C_z, O_z, G\}$
(iii) $\{A_i^{\text{exp}}\}_3 = \{A_i^{\text{exp}}\}_2 + \{H\}$
Extract $r_3 e^{i \delta_3^4}$ at $(W = 1.8 \text{ GeV}, \theta_{c.m.} = -0.1)$ from data

1. **Bootstrap**: M sets of data \(\{A_i^j \pm \delta A_i^j, i = 1, ..., N\}, j = 1, ..., M \)
2. χ^2 fit to extract amplitudes for each set of synthetic data
3. Histogram solutions in amplitude space

Red: accuracy = 0.1; Blue: accuracy = 0.01

(i) “mathematically complete set”: \(\{A_i^{\exp}\}_1 = \{\frac{d\sigma}{d\Omega}, \Sigma, T, P, C_x, O_x, E, F\} \)
(ii) \(\{A_i^{\exp}\}_2 = \{A_i^{\exp}\}_1 + \{C_z, O_z, G\} \)
(iii) \(\{A_i^{\exp}\}_3 = \{A_i^{\exp}\}_2 + \{H\} \)
(iv) \(\{A_i^{\exp}\}_4 = \{A_i^{\exp}\}_3 + \{T_x, T_z, L_x, L_z\} \)
Extract $r_3 e^{i \delta_3}$ at ($W = 1.8$ GeV, $\theta_{c.m.} = -0.1$) from data

Compare bootstrap method:
Extract \(r_3 e^{i \delta_3} \) at \((W = 1.8 \text{ GeV}, \theta_{c.m.} = -0.1)\) from data

Compare bootstrap method:

To MCMC (nested sampling):
Resolving power of $p(\gamma, K^+) \Lambda$ polarization data?

- All data in grids:
 1. $\Delta W = 20$ MeV
 2. $\Delta \cos \theta_{c.m.} = 0.1$

- 2241 single polarization observables (Σ, P, T)
- 452 double polarization observables (beam-recoil, target-recoil, beam-target)

The darker the color, the better the reaction amplitudes are determined by the data
Model Discrimination

Key Points:

- Introduced distance measure between models in amplitude space.
- Experimental data must lead to PDFs in amplitude space that have smaller dispersions than characteristic distances between models.
- The power of new measurements can be analysed using synthetic data from models, plus realistic experimental uncertainties.
- Bootstrap and MCMC (Nested Sampling) give similar distributions.

Questions:

- How to extend this for distributions over kinematic variables?
Key Points:

- Introduced **distance** measure between models in amplitude space.

Questions:

- How to extend this for distributions over kinematic variables?
Model Discrimination

Key Points:

- Introduced distance measure between models in amplitude space.
- Experimental data must lead to PDFs in amplitude space that have smaller dispersions than characteristic distances between models.

Questions:
Key Points:

• Introduced distance measure between models in amplitude space.
• Experimental data must lead to PDFs in amplitude space that have smaller dispersions than characteristic distances between models.
• The power of new measurements can be analysed using synthetic data from models, plus realistic experimental uncertainties.

Questions:
Key Points:

- Introduced *distance* measure between models in amplitude space.
- Experimental data must lead to PDFs in amplitude space that have smaller dispersions than characteristic distances between models.
- The power of new measurements can be analysed using synthetic data from models, plus realistic experimental uncertainties.
- Bootstrap and MCMC (Nested Sampling) give similar distributions.

Questions:
Model Discrimination

Key Points:

- Introduced **distance** measure between models in amplitude space.
- Experimental data must lead to PDFs in amplitude space that have smaller dispersions than characteristic distances between models.
- The power of new measurements can be analysed using synthetic data from models, plus realistic experimental uncertainties.
- Bootstrap and MCMC (Nested Sampling) give similar distributions.

Questions:

- How to extend this for distributions over kinematic variables?
Data Consistency
Fierz Identity Comparison: $\gamma + p \rightarrow K + \Lambda$

For $\gamma + N \rightarrow$ p.s. meson + baryon

$O_x^2 + O_z^2 + C_x^2 + C_z^2 + \Sigma^2 - T^2 + P^2 = 1$

Figure 14: Open circles - $C_x^2 + C_z^2$ [4]; Filled - $1 - \Sigma^2 + T^2 - P^2 - O_x^2 - O_z^2$ [6]
The constraints among observables, e.g.:

$$O_x^2 + O_z^2 + C_x^2 + C_z^2 + \Sigma^2 - T^2 + P^2 = 1$$

stem from the constraint among amplitudes:

$$|a_1|^2 + |a_2|^2 + |a_3|^2 + |a_4|^2 = 1$$

i.e. surface of a unit 7-sphere in \mathbb{R}^8
Data Consistency Idea

The constraints among observables, e.g.:

\[O_x^2 + O_z^2 + C_x^2 + C_z^2 + \Sigma^2 - T^2 + P^2 = 1 \]

stem from the constraint among amplitudes:

\[|a_1|^2 + |a_2|^2 + |a_3|^2 + |a_4|^2 = 1 \]

i.e. surface of a unit 7-sphere in \(\mathbb{R}^8 \)

- Can we map PDFs in observable space to PDF in amplitude space?
- If so, can we project amplitude PDF back into a joint observable PDF?
Test Case: π-N Scattering

Two amplitudes, four observables:

\[
\frac{d\sigma}{d\Omega} = |f|^2 + |g|^2
\]
\[
A = |f|^2 - |g|^2
\]
\[
R = -2 \text{Re} \ (fg^*)
\]
\[
P = 2 \text{Im} \ (fg^*)
\]

Normalize:

\[
|f|^2 + |g|^2 = 1
\]

Constraint:

\[
A^2 + R^2 + P^2 = 1
\]

Figure 15: π^- p (left) and π^+ p (right) polarization observables
Test Case: π-N Scattering

- Generate “true” synthetic data
- Generate statistical uncertainty
- Sample from $\mathcal{N}(\mu, \sigma)$
- Add systematic error

<table>
<thead>
<tr>
<th>Observables</th>
<th>A</th>
<th>R</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>“True” values</td>
<td>0.35</td>
<td>0.09</td>
<td>0.93</td>
</tr>
<tr>
<td>“Smeared”</td>
<td>0.10 ± 0.45</td>
<td>0.14 ± 0.14</td>
<td>0.93 ± 0.06</td>
</tr>
<tr>
<td>Systematic Error</td>
<td>0.04</td>
<td>0.06</td>
<td>-0.09</td>
</tr>
</tbody>
</table>
Test Case: π-N Scattering

Unconstrained PDF

- Use emcee
- Sample from 3D Gaussian
- Mean and standard deviation from smeared data
- Assume uncorrelated measurements
- Corner plot with true values indicated

<table>
<thead>
<tr>
<th>Observables</th>
<th>A</th>
<th>R</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>“True” values</td>
<td>0.35</td>
<td>0.09</td>
<td>0.93</td>
</tr>
<tr>
<td>Unconstrained MCMC</td>
<td>0.10 ± 0.44</td>
<td>0.14 ± 0.14</td>
<td>0.93 ± 0.06</td>
</tr>
</tbody>
</table>
Test Case: π-N Scattering

Constrained PDF

- Use emcee
- Sample from amplitude space
- Calculate likelihood from 3D Gaussian
- Corner plot with true values indicated

Observables

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>R</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>“True” values</td>
<td>0.35</td>
<td>0.09</td>
<td>0.93</td>
</tr>
<tr>
<td>Unconstrained MCMC</td>
<td>0.04 ± 0.25</td>
<td>0.14 ± 0.14</td>
<td>0.95 ± 0.04</td>
</tr>
</tbody>
</table>
Next steps

π-N Scattering Roadmap

- Generate large sample of synthetic data
- For each data set:
 - select different experimental uncertainty
 - select different systematic uncertainty
- Analyse all sets statistically
- Apply to measured data

Further work

- Apply procedure to pseudoscalar meson photoproduction
- Other reactions?
Question: How to cope with different bins?
Data Consistency

Key Points:

• Independent polarization measurements lead to observables that are projections of the same amplitudes
• Map observable PDFs into amplitude space PDFs and combine.
• Inverse map of amplitude PDF to observable space
• Needs to be extended to pseudoscalar meson photoproduction (4 amplitudes), and other reactions?

Questions:

• Can this be used to detect inconsistent data?
• How to deal with kinematic bins that partially overlap?
Key Points:

- Independent polarization measurements lead to observables that are projections of the same amplitudes

Questions:
Data Consistency

Key Points:

• Independent polarization measurements lead to observables that are *projections* of the same amplitudes
• Map observable PDFs into *amplitude* space PDFs and combine.

Questions:

• Can this be used to detect inconsistent data?
• How to deal with kinematic bins that partially overlap?
Key Points:

- Independent polarization measurements lead to observables that are **projections** of the same amplitudes.
- Map observable PDFs into **amplitude** space PDFs and combine.
- Inverse map of amplitude PDF to **observable** space.

Questions:

- Can this be used to detect inconsistent data?
- How to deal with kinematic bins that partially overlap?
Key Points:

- Independent polarization measurements lead to observables that are *projections* of the same amplitudes.
- Map observable PDFs into *amplitude* space PDFs and combine.
- Inverse map of amplitude PDF to *observable* space.
- Needs to be extended to pseudoscalar meson photoproduction (4 amplitudes), and other reactions?

Questions:

- Can this be used to detect inconsistent data?
- How to deal with kinematic bins that partially overlap?
Data Consistency

<table>
<thead>
<tr>
<th>Key Points:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Independent polarization measurements lead to observables that are projections of the same amplitudes</td>
</tr>
<tr>
<td>• Map observable PDFs into amplitude space PDFs and combine.</td>
</tr>
<tr>
<td>• Inverse map of amplitude PDF to observable space</td>
</tr>
<tr>
<td>• Needs to be extended to pseudoscalar meson photoproduction (4 amplitudes), and other reactions?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Questions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Can this be used to detect inconsistent data?</td>
</tr>
</tbody>
</table>
Key Points:

- Independent polarization measurements lead to observables that are *projections* of the same amplitudes.
- Map observable PDFs into *amplitude* space PDFs and combine.
- Inverse map of amplitude PDF to *observable* space.
- Needs to be extended to pseudoscalar meson photoproduction (4 amplitudes), and other reactions?

Questions:

- Can this be used to detect inconsistent data?
- How to deal with kinematic bins that *partially* overlap?
Conclusion
Summary

<table>
<thead>
<tr>
<th>Topic</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baryon Spectroscopy</td>
<td>We are still not sure of the spectrum of baryons.</td>
</tr>
<tr>
<td>Model Discrimination</td>
<td>We need an analogue of a Rayleigh Criterion.</td>
</tr>
<tr>
<td>Data Consistency</td>
<td>{Work in progress}: Create joint observable PDFs. Clean or process data for model inference.</td>
</tr>
</tbody>
</table>
Baryon Spectroscopy

- We are still not sure of the spectrum of baryons

Model Discrimination

Data Consistency
<table>
<thead>
<tr>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baryon Spectroscopy</td>
</tr>
<tr>
<td>· We are still not sure of the spectrum of baryons</td>
</tr>
<tr>
<td>Model Discrimination</td>
</tr>
<tr>
<td>· We need an analogue of a Rayleigh Criterion</td>
</tr>
<tr>
<td>Data Consistency</td>
</tr>
</tbody>
</table>
Summary

Baryon Spectroscopy
- We are still not sure of the spectrum of baryons

Model Discrimination
- We need an analogue of a Rayleigh Criterion

Data Consistency
- {Work in progress}: Create joint observable PDFs
Summary

Baryon Spectroscopy
- We are still not sure of the spectrum of baryons

Model Discrimination
- We need an analogue of a Rayleigh Criterion

Data Consistency
- {Work in progress}: Create joint observable PDFs
- Clean or process data for model inference
Collaborators

[In addition to members of the Glasgow group]

- CLAS Collaboration: Meson Photoproduction measurements
- J. Nys and J. Ryckebusch (University of Gent, Belgium): Model Discrimination

