Baryon Interactions from Lattice QCD with physical masses

Takumi Doi
(Nishina Center, RIKEN)

for HAL QCD Collaboration
Hadrons to Atomic nuclei from Lattice QCD
(HAL QCD Collaboration)

S. Aoki, D. Kawai, T. Miyamato (YITP)
T. Doi, T. Hatsuda, (RIKEN)
F. Etminan (Univ. of Birjand)
S. Gongyo (Univ. of Tours)
Y. Ikeda, N. Ishii, K. Murano (RCNP)
T. Inoue (Nihon Univ.)
T. Iritani (Stony Brook Univ.)
H. Nemura, K. Sasaki (Univ. of Tsukuba)
The journey from Quarks to Universe

QCD vacuum → Baryons → Nuclei

QCD vacuum → 1st-principle Lattice QCD → Hadron Forces

Hadron Forces → 3N → APR

Hadron Forces → 2N → Y
dof

EoS of Dense Matter

Nuclear Forces / Hyperon Forces

QCD → Hadron Forces → Neutron Stars / Supernovae

Nucleosynthesis

J-PARC

Lattice QCD

ab-initio nuclear calc.

aLIGO/KAGRA

RIBF/FRIB

J1614-2230

PSR1913+16

Hitomi

© Leinweber

© J-PARC
The journey from unphysical to physical quark masses

~2012

We were here

$M_\pi = 0.4 \text{ GeV}$
$L = 3 \text{ fm}$

\rightarrow lighter m_q

K-computer

HPCI Strategic Program Field 5
“The origin of matter and the universe”
FY2010-15

Physical M_π
$L = 8 \text{ fm}$

Phys. point
• Outline
 – Introduction
 – (Theoretical framework) [↩ S. Aoki’s talk]
 – Challenges at physical quark masses
 – Results at physical quark masses
 – Summary / Prospects
[HAL QCD method]

- Nambu-Bethe-Salpeter (NBS) wave function

\[\psi(\vec{r}) = \langle 0 | N(\vec{r}) N(\vec{0}) | N(\vec{k}) N(-\vec{k}); in \rangle \]

\[(\nabla^2 + k^2)\psi(\vec{r}) = 0, \quad r > R \]

- phase shift at asymptotic region

\[\psi(r) \approx A \frac{\sin(kr - l\pi/2 + \delta(k))}{kr} \]

Extended to multi-particle systems

- Consider the wave function at “interacting region”

\[(\nabla^2 + k^2)\psi(r) = m \int dr' U(r, r') \psi(r'), \quad r < R \]

- \(U(r, r') \): faithful to the phase shift by construction
- \(U(r, r') \): E-independent, while non-local in general
 - Non-locality \(\Rightarrow \) derivative expansion

References:
- M. Luscher, NPB354(1991)531
- C.-J. Lin et al., NPB619(2001)467
- CP-PACS Coll., PRD71(2005)094504
- S. Aoki et al., PRD88(2013)014036
- Aoki-Hatsuda-Ishii PTP123(2010)89
HAL QCD method

\[\psi_{NBS}(\vec{r}) = \langle 0 \mid N(\vec{r})N(\vec{0})\mid N(\vec{k})N(-\vec{k}), in \rangle \]
\[R e^{i\delta(k)} \sin(kr - l\pi/2 + \delta_l(k))/(kr) \]
(at asymptotic region)

\[(k^2/m_N - H_0) \psi(\vec{r}) = \int d\vec{r}' U(\vec{r}, \vec{r}') \psi(\vec{r}') \]

E-indep \& non-local Potential: Faithful to phase shifts

Phase shifts

Phen. Potential
Various Theoretical methods

QCD
- **quarks**
- **gluons**
 - #params = 4
 - quark masses & coupling

Effective DoF

Chiral Sym.
- (w/ Effective DoF)

Lattice QCD
- (HAL method)

Lattice QCD
- (Luscher’s method)

Phen. potentials
- #params(2NF) = O(40)
- #params(3NF) = several

Pionfull/ Pionless EFT potentials
- #params(2NF) = 24+…
- #params(3NF) = 2+…
- or
- #params(2NF) = 2+…
- #params(3NF) = 1+…

LQCD potentials
- #params(2NF) = 0
- #params(3NF) = 0
- #params(YN,YY,YNN) = 0

Exp. Data

(Comparison between 2 LQCD methods ➔ T. Iritani’s talk)
• **Outline**
 - Introduction
 - (Theoretical framework)
 - **Challenges at physical quark masses**
 - Signal/Noise Issue
 - Coupled Channel Systems
 - Computational Challenge
 - Results at physical quark masses
 - Summary / Prospects

[T. Iritani’s talk]
Signal/Noise issue w/ ~continuum on Lat

- **Challenge in Luscher’s method**: ground state saturation

\[S/N \sim \exp\left[-A \times (m_N - 3/2m_\pi) \times t \right] \]

\[1/t \simeq \Delta E \simeq \frac{1}{m_N} \frac{(2\pi)^2}{L^2} \]

\[S/N \propto \begin{cases} 10^{-4} & L = 3\text{fm} \\ 10^{-13} & L = 6\text{fm} \\ 10^{-25} & L = 8\text{fm} \end{cases} \]

\[L = \infty \]

- **Time-dependent HAL method**
 - E-indep potential
 - \(\Rightarrow \) “Signal” from (elastic) excited states
 - G.S. saturation \(\Rightarrow \) Elastic states saturation

[Exponential Improvement]

Our solution:

- N.Ishii et al. PLB712(2012)437
Coupled Channel systems
(beyond inelastic threshold)

- Essential in many interesting physics
 - Hyperon Forces (e.g., H-dibaryon ($\Lambda\Lambda$-$\Xi\Sigma\Sigma$))
 - Exotic mesons, Resonances, etc. (e.g., $Zc(3900)$)

\[\psi_{AB}(r, k) = \frac{1}{\sqrt{Z_A Z_B}} \langle 0 | \phi_A(x + r) \phi_B(x) | W \rangle \]
\[\psi_{CD}(r, q) = \frac{1}{\sqrt{Z_C Z_D}} \langle 0 | \phi_C(x + r) \phi_D(x) | W \rangle \]

\[W = \sqrt{m_A^2 + k^2} + \sqrt{m_B^2 + k^2} = \sqrt{m_C^2 + q^2} + \sqrt{m_D^2 + q^2} \]

S.Aoki et al. (HAL Coll.), PRD87(2013)034512
Computational Challenge

- Enormous comput. cost for multi-baryon correlators
 - Wick contraction (permutations)
 \[\sim [(\frac{3}{2}A)!]^2 \quad (A: \text{mass number}) \]
 - color/spinor contractions
 \[\sim 6^A \cdot 4^A \quad \text{or} \quad 6^A \cdot 2^A \]
 - Unified Contraction Algorithm (UCA)
 - A novel method which unifies two contractions

\[\Pi^{2N} \approx \langle qqqqq(t)\bar{q}(\xi_1^{'})\bar{q}(\xi_2^{'})\bar{q}(\xi_3^{'})\bar{q}(\xi_4^{'})\bar{q}(\xi_5^{'})\bar{q}(\xi_6^{'})\rangle(t_0) \times \text{Coeff}^{2N}(\xi_1^{'}, \cdots, \xi_6^{'}) \]

Drastic Speedup

- $\times 192$ for $^3\text{H}/^3\text{He}$, $\times 20736$ for ^4He, $\times 10^{11}$ for ^8Be (x add’l. speedup)

See also subsequent works: Detmold et al., PRD87(2013)114512
Gunther et al., PRD87(2013)094513
• **Outline**

 — Introduction

 – (Theoretical framework)

 – Challenges at physical quark masses

 • Signal/Noise Issue ➔ Time-dependent HAL method
 • Coupled Channel Systems ➔ Coupled channel HAL potential
 • Computational Challenge ➔ Unified Contraction Algorithm (UCA)

 – Results at physical quark masses

 – Summary / Prospects
Simulations w/ ~ physical masses

Gauge Config Generation

K-computer (RIKEN/ AICS)

10PFlops

FX100 (RIKEN/ Wako)

1PFlops

Baryon Forces

Calc of NBS

⇒ HAL QCD method

HA-PACS (Tsukuba U.)

HPCI Strategic Program Field 5
“The origin of matter and the universe”
FY2010-15
Simulation Setup

- $N_f = 2+1$ clover fermion + Iwasaki gauge action
 - APE-Stout smearing ($\alpha=0.1, n_{\text{stout}}=6$)
 - Non-perturbatively $O(a)$-improved
 - $1/a \sim 2.3$ GeV ($a \sim 0.085$ fm)
 - Volume: $96^4 \sim (8 \text{ fm})^4$
 - $m(\pi) \sim 145$ MeV, $m(K) \sim 525$ MeV
 - $\#_{\text{traj}} \sim 2000$ generated
 - DDHMC (ud) + UVPHMC (s) w/ preconditioning

\[\frac{m_H/m_{\Omega}}{\text{lat}} / \frac{m_H/m_{\Omega}}{\text{exp}} - 1 \]

deviation from the Exp.:
\[\delta m_\pi \sim +5\%, \quad \delta m_K \sim +2\%. \]
Simulation Setup

• **Measurements**
 – ud, s mass = sea mass (unitary point)
 – Wall source
 • Coulomb gauge fixing after smearing
 • Spacial PBC & Temporal DBC w/ forward/backward average
 – #stat = 200 configs x 4 rotation x 20-72 src in this talk
 • #stat \rightarrow x1.3-4 in FY2015 (& add’l x2 in FY2016)
 • (Relativistic term omitted in this preliminary analyses)

• **Code development**
 – Efficient implementation of UCA
 – Many channels w/ L^3 dof in NBS
 – Block solver for multiple RHS
 – K-computer @ 2048 node (x 8core/node)
 • \sim25% efficiency (\sim65 TFlops sustained)
Strategy for phys point BB-forces calc

- Focus on the most important forces:
 - Central/tensor forces for all NN/YN/YY in P=(+) (S, D-waves)

\[
U(\vec{r}, \vec{r}') = V_c(r) + S_{12} V_T(r) + \vec{L} \cdot \vec{S} V_{LS}(r) + \mathcal{O}(\nabla^2)
\]

- Hyperon forces provide precious “predictions”

<table>
<thead>
<tr>
<th>S=0</th>
<th>S=-1</th>
<th>S=-2</th>
<th>S=-3</th>
<th>S=-4</th>
<th>S=-5, -6</th>
</tr>
</thead>
<tbody>
<tr>
<td>NN</td>
<td>ΔN, ΣN</td>
<td>ΔΛ, ΛΣ, ΣΣ, ΝΞ</td>
<td>ΔΞ, ΣΞ</td>
<td>ΞΞ</td>
<td>ΩΩ</td>
</tr>
</tbody>
</table>

“milestone-postdiction” Hypermixed phys @ J-PARC
H-dibaryon ?, Ξ-hypernuclei

Λ appearance in NS & EoS ? New bound state(s) ?
ΩΩ system \((S=-6)\)

\(^1S_0\) : Pauli allowed channel, candidate for exotic bound state

Model varies from bound state to repulsive interactions

HAL study @ \(m(\pi)=0.7\text{GeV}\): nearly bound (Unitary Region)

M. Yamada et al., PTEP2015, 071B01

See also S. Aoki’s talk

c.f. Luscher’s method @ \(m(\pi)=0.39\text{GeV}\): weak repulsion
\(a = -0.16(22)\text{fm}\)

M. Buchoff et al, PRD85(2012)094511
ΩΩ system in 1S_0

Potential

m(eff) for single Ω

(200conf x 4rot x 72src)

t = 18 : ~0.2-0.3% sys error

[S. Gongyo / K. Sasaki]
ΩΩ system in 1S_0

Phase Shifts

Scatt. Length
$a = -3.53(18)(54) \text{ fm}$
(@ $t=18$ (&17))

The Most Strange Dibaryon

⇒ HIC experiments?

[S. Gongyo / K. Sasaki]
$\Xi\Xi$ system ($S = -4$)

- $^1S_0 \sim 27$-plet
 \Leftrightarrow $\text{NN}(^1S_0) + \text{SU}(3)$ breaking
 - Phen. model (Nijmegen) : possibly bound
 - EFT (Haidenbauer et al. ’14) : unbound favored

- $^3S_1 - ^3D_1 \sim 10$-plet
 \Leftrightarrow unique w/ hyperon DoF
 \Leftrightarrow Σ^- in neutron star
\[^1S_0 \sim 27\text{-plet} \quad \Leftrightarrow \quad \text{attractive } V_c \]

\[^3S_1-^3D_1 \sim 10\text{-plet} \quad \Leftrightarrow \quad \text{repulsive } V_c, \text{weak } V_t \]

(200conf x 4rot x 44src)
$\Xi \Xi$ phase shifts (1S_0)

$\Xi \Xi$ (1S_0) is unbound

(t-dependence will be checked again w/ larger #stat)

(2-gauss + 2-OBEP fit)
(200conf x 4rot x 44src)

$\Xi \Xi$ (1S0) is unbound

Scatt. Length

$a = 1.35(047)$ fm (t=14)
$a = 1.97(113)$ fm (t=16)

m(\text{eff})$ for single Ξ

t = 14-18 : ~0.3-1% sys error

Ξ (CG05-CG05)

Ξ (CG05-CG05)

Ξ (CG05-CG05)

HIC experiments?
S=−3 systems

- \(\Xi\Sigma \) (I=3/2)
 - \(^1S_0 \sim 27\)-plet
 \(\leftrightarrow \) NN\(^1S_0\) + SU(3) breaking
 - \(^3S_1\)\(^-\)\(^3D_1 \sim 10^*\)-plet
 \(\leftrightarrow \) NN\(^3S_1\)\(^-\)\(^3D_1\) + SU(3) breaking

- \(\Xi\Lambda-\Xi\Sigma \) (I=1/2) : coupled channel
 - \(^1S_0 \sim 27\)-plet & 8s-plet
 - \(^3S_1\)\(^-\)\(^3D_1 \sim 10\)-plet & 8a-plet
ΞΣ(Ι=3/2, spin triplet)

V_C(r) [MeV] (ΞΣ spin-triplet)

Central

V_T(r) [MeV] (ΞΣ)

Tensor

(bar) phase shifts & mixing

ΞΣ spin triplet (δ_{0}^{\bar{R}})

unbound

ΞΣ spin triplet (δ_{2}^{\bar{R}})

ΞΣ spin triplet (ε_{1}^{\bar{R}})

Preliminary

N.B. t-dep should be checked; single m_B has ~0.3-3% sys @ t=10-14

(200conf x 4rot x 20src)

[N. Ishii]
H-dibaryon channel \((S=−2)\)

\({}^{1}S_{0}, \Lambda\Lambda−N\Xi−\Sigma\Sigma, \text{Coupled Channel}\)

R. Jaffe (1977), “Perhaps a Stable Dihyperon”

NAGARA-event (2001)

\[\Xi^- + {}^{12}\text{C} \rightarrow _{\Lambda\Lambda}{}^{6}\text{He} + {}^{4}\text{He} + t\]

- \(\Lambda\Lambda\) weak attraction
- No deeply bound H-dibaryon
H-dibaryon @ Nf=3, heavy masses

Inoue et al. (HAL QCD Coll.) PRL106(2011)162002
Beane et al. (NPLQCD Coll.) PRL106(2011)162001

c.f. B.E. = 74.6(3.3)(3.4) MeV @ $m_\pi=0.8\text{GeV}$ by NPL (’12)
H-dibaryon @ Nf=2+1, heavy masses

\[\Lambda\Lambda \text{ and } N\Xi \text{ phase shifts} \]

- \(N_f = 2+1 \) full QCD with \(L = 2.9 \text{fm} \)
- Preliminary!

- \(m_{\pi} = 700 \text{ MeV} \)
 - bound state
- \(m_{\pi} = 570 \text{ MeV} \)
 - resonance near \(\Lambda\Lambda \) threshold
- \(m_{\pi} = 410 \text{ MeV} \)
 - resonance near \(N\Xi \) threshold

H-dibaryon is unlikely bound state
H-dibaryon @ Nf=2+1, $m_\pi = 145$ MeV

diagonal in SU(3)-irrep base

- $m_{\Sigma\Sigma} = 2380$ MeV
- $m_{N\Xi} = 2260$ MeV
- $m_{\Lambda\Lambda} = 2230$ MeV

Strong Attraction in flavor-singlet channel

$(200 \text{conf} \times 4 \text{rot} \times 20 \text{src}, t=10)$
ΛΛ, \(\Lambda \Xi \) (effective) 2x2 coupled channel analysis

\(\Sigma \Sigma \) channel ↔ couples strongly to flavor octet channel ↔ noisy because they are quark-Pauli forbidden

→ Improve the S/N by considering only \(\Lambda \Lambda, \Lambda \Xi \) dof at low energies

\[m_{\Sigma \Sigma} = 2380 \text{MeV} \]

\[m_{\Lambda \Xi} = 2260 \text{MeV} \]

\[m_{\Lambda \Lambda} = 2230 \text{MeV} \]

3x3 2x2
ΛΛ, NΞ (effective) 2x2 coupled channel analysis

ΛΛ, NΞ phase shifts

Preliminary

$m_{\Sigma\Sigma} = 2380\text{MeV}$

"Perhaps a Resonant Dihyperon"

\Rightarrow J-PARC experiment (E42)

$m_{N\Xi} = 2260\text{MeV}$

H-resonance

$m_{\Lambda\Lambda} = 2230\text{MeV}$

N.B. t-dep should be checked; single m_B has ~3% sys @ t=10

[K. Sasaki]
NΞ−-interactions (S=−2)

Ξ− could appear in the core of Neutron Star
 e.g., J. Schaffner-Bielich, NPA804(2008)309

KISO-event (2014)

\[\Xi^- + ^{14}\text{N} \rightarrow \Lambda^{10}\text{Be} + \Lambda^5\text{He} \]

- First observation of Ξ-nuclei
- B.E. = 4.38(25) MeV
 (or 1.11(25) MeV)
Is interaction net attractive? Stay tuned!

(net attractive @ m(pi)=0.66-88GeV)
S=–1 systems

↔ strangeness nuclear physics (Λ-hypernuclei @ J-PARC)

Λ should (?) appear in the core of Neutron Star

↔ Huge impact on EoS of high dense matter

• $\Lambda N–\Sigma N$ ($I=1/2$) : coupled channel
 • $^1S_0 \sim 27$-plet & 8s-plet
 • 3S_1–$^3D_1 \sim 10^*$-plet & 8a-plet

• ΣN ($I=3/2$)
 • $^1S_0 \sim 27$-plet
 ⇔ $NN(^1S_0)$ + SU(3) breaking
 • 3S_1–$^3D_1 \sim 10$-plet
ΛN–ΣN Vc potential in $^3S_1–^3D_1$ [H. Nemura]
ΛN–ΣN Vt potential in $^3S_1–^3D_1$

Very preliminary result of LN potential at the physical point

$$V_T(\ ^3S_1–^3D_1) = \frac{\sqrt{2}}{2\mu} \left(\frac{\nabla^2}{r} - \frac{\partial}{\partial t} \right) R(\vec{r}, t) = \int d^3r' U(\vec{r}, \vec{r}') R(\vec{r}', t) + O(k^4) = V_{LO}(\vec{r}) R(\vec{r}, t) + \cdots \ (8)$$

More in talk by H. Nemura
NN system \((S = 0) \)
NN-Potentials

1S_0

$^3S_1 - ^3D_1$

- V_c: repulsive core + long-range attraction
- V_t: tensor force clearly visible

(200conf x 4rot x 44src)

Preliminary
NN-Potentials (tensor)

- Qualitatively similar tail as OPEP force
- Larger t w/ larger #stat is desirable

m_{eff} for single N

$t = 8-10 : \sim 2-4\% \text{ sys error}$
Summary

The 1st LQCD for Baryon Interactions at ~ phys. point

- $m(\pi) \approx 145$ MeV, $L \approx 8$ fm, $1/a \approx 2.3$ GeV
- Central & Tensor forces calculated for all $NN/YN/YY$ in $P=(+)$ channel
- Key formula / algorithm
 - t-dep HAL QCD method
 - Coupled channel formalism
 - Unified contraction algorithm (UCA)
- Various exciting results
 - $\Omega\Omega (^1S_0)$: a new exotic dibaryon state
 - $\Xi\Xi (^1S_0)$: most likely an unbound state
 - H-dibaryon: indication of a resonance
 - NN: tensor force is clearly visible

Prospects

- #stat will be $\sim x3 - x8$ from today’s figs
- New techniques to improve S/N are under R&D
- [Exascale-Era] LS-forces, $P=(-)$ channel, 3-baryon forces, etc., & EoS
3N-forces (3NF)

Nf=2+1, m_\pi=0.51\ GeV

Nf=2, m_\pi=0.76-1.1\ GeV

Kernel: \(\sim 50\%\) efficiency achieved!

T.D. et al. (HAL Coll.) PTP127(2012)723
+ t-dep method updates etc.
Backup Slides
Reliability Test of LQCD methods

- High-stat study for BB-system (@m(pi)=0.5GeV)
 - Benchmark w/ two LQCD setup (wall & smeared src)

 ➞ Physical outputs should NOT depend on these setup

Luscher’s method (traditional)

\[\Delta E = m \Xi - 2m \Xi \]

- \(t \) vs \(\Delta E \) (phase shift)
- Inconsistent “signal” (red (wall) vs blue (smeared))
- cannot judge which (or neither) is reliable

HAL method (new !)

- \(V_{\text{eff}}(r) \) from wall & \(V^{\text{LO}}(r) \) from wall+smeared
- are consistent

\[\text{S/N} \approx \exp(-\alpha t) \]

\[V_{\text{wall}}(r, 11) \quad V_{\text{LO}}(r) \text{ at } t = 11 \]
Understand the origin of “fake plateaux”

Potential

Solve Schrodinger eq. in Finite V

Eigen-wave functions

Decompose NBS correlator to each eigenstates

NBS correlator $\Psi(r,t)$

Smeared wall

Eigen-energies

<table>
<thead>
<tr>
<th>n-th A1</th>
<th>ΔE_n [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-2.58(1)</td>
</tr>
<tr>
<td>1</td>
<td>52.49(2)</td>
</tr>
<tr>
<td>2</td>
<td>112.08(2)</td>
</tr>
<tr>
<td>3</td>
<td>169.78(2)</td>
</tr>
<tr>
<td>4</td>
<td>224.73(1)</td>
</tr>
</tbody>
</table>
NBS correlator $\Psi(r,t)$

Contribution from each (excited) states (@ $t=0$)

R-correlator
$R(t) = \sum_r \Psi(r,t)$

(R(t) w/ smeared has been used in Luscher’s method)

Contribution from each (excited) states (@ $t=0$)

Decompose NBS correlator to each eigenstates

excited states NOT suppressed excited states suppressed

Blue: smeared Red: wall

G.S. Excited States

G.S.

Excited States

ΔE_n [MeV]

ΔE_n [MeV]
Understand the origin of “fake plateaux”

We are now ready to “predict” the behavior of $m(\text{eff})$ of ΔE at any “t”

“prediction” reproduce the real data well

To obtain a “real plateau”, $t/a > 100 \ (t > 10\text{fm})$ is necessary

Extreme care is necessary for the results from the Luscher’s method
Understand the origin of "fake plateaux"

We are now ready to “predict” the behavior of m(eff) of ΔE at any “t”.

To obtain a “real plateau”, $t/a > 100$ ($t > 10$ fm) is necessary.

Extreme care is necessary for the results from the Luscher’s method.

"prediction" reproduce the real data well.