Why Green’s functions?

Ab initio and

as a framework to analyze experimental data (and extrapolate and predict properties of exotic nuclei)

→ dispersive optical model (DOM)

Focus on recent DOM → DSM developments

Some surprises!

Conclusions
What do nucleons do in the nucleus?

- Shell model from 1949 with residual interaction? Not enough!
- Why do nuclei have the central density they have? Unanswered
- Do they sit in independent-particle model orbits all the time?
- Even electrons do other things some of the time!

Hydrogen 1s wave function “seen” experimentally in (e,2e) reaction

\[
\phi_{1s}(p) = \frac{2^{3/2}}{\pi} \frac{1}{(1 + p^2)^2}
\]

But in other atoms slight deviations!

- Properly executed --> Green’s function answers a question from Sir Denys Wilkinson: “What does a nucleon do in the nucleus?”
Remarks

• Given a Hamiltonian, a perturbation expansion can be generated for the single-particle propagator

• Dyson equation determines propagator in terms of nucleon self-energy

• Self-energy is causal and obeys dispersion relations relating its real and imaginary part

• Data constrained self-energy acts as ideal interface between ab initio theory and experiment
Propagator / Green's function

- Lehmann representation
 \[G_{\ell j}(k, k'; E) = \sum_m \frac{\langle \Psi_0^A | a_{k\ell j} | \Psi_{m+1}^A \rangle \langle \Psi_{m+1}^A | a_{k'\ell j}^\dagger | \Psi_0^A \rangle}{E - (E_{m+1}^A - E_0^A) + i\eta} \]
 \[+ \sum_n \frac{\langle \Psi_0^A | a_{k'\ell j}^\dagger | \Psi_{n-1}^A \rangle \langle \Psi_{n-1}^A | a_{k\ell j} | \Psi_0^A \rangle}{E - (E_0^A - E_{n-1}^A) - i\eta} \]

- Any other single-particle basis can be used

- Overlap functions \(\rightarrow \) numerator

- Corresponding eigenvalues \(\rightarrow \) denominator

- Spectral function
 \[S_{\ell j}(k; E) = \frac{1}{\pi} \text{Im} \ G_{\ell j}(k, k; E) \]
 \[= \sum_n \left| \langle \Psi_{n-1}^A | a_{k\ell j} | \Psi_0^A \rangle \right|^2 \delta(E - (E_0^A - E_{n-1}^A)) \]

- Spectral strength in the continuum
 \[S_{\ell j}(E) = \int_0^\infty dk \ k^2 \ S_{\ell j}(k; E) \]

- Discrete transitions
 \[\sqrt{S_{\ell j}^n} \ \phi_{\ell j}^n(k) = \langle \Psi_{n-1}^A | a_{k\ell j} | \Psi_0^A \rangle \]

- Positive energy \(\rightarrow \) see later

reactions and structure
Propagator from Dyson Equation and “experiment”

Equivalent to ...

\[E_n^- = E_0^A - E_{n}^{A-1} \]

Self-energy: non-local, energy-dependent potential

With energy dependence: spectroscopic factors \(< 1\)

\(\Rightarrow \) as extracted from (e,e'p) reaction

\[\frac{k^2}{2m} \phi_{\ell_j}^n(k) + \int dq \, q^2 \, \Sigma^*_\ell_j(k, q; E_n^-) \, \phi_{\ell_j}^n(q) = E_n^- \, \phi_{\ell_j}^n(k) \]

Spectroscopic factor

\[S_{\ell_j}^n = \int dk \, k^2 \, \left| \langle \Psi_n^{A-1} | a_{k\ell_j} | \Psi_0^A \rangle \right|^2 < 1 \]

Dyson equation also yields

\[[\chi_{\ell_j}^{elE}(r)]^* = \langle \Psi_{elE}^{A+1} | a_{r\ell_j}^\dagger | \Psi_0^A \rangle \quad \text{for positive energies} \]

Elastic scattering wave function for protons or neutrons

Dyson equation therefore provides:

Link between scattering and structure data from **dispersion relations**

reactions and structure
Propagator in principle generates

- Elastic scattering cross sections for p and n
- Including all polarization observables
- Total cross sections for n
- Reaction cross sections for p and n
- Overlap functions for adding p or n to bound states in Z+1 or N+1
- Plus normalization --> spectroscopic factor
- Overlap function for removing p or n with normalization
- Hole spectral function including high-momentum description
- One-body density matrix; occupation numbers; natural orbits
- Charge density
- Neutron distribution
- p and n distorted waves
- Contribution to the energy of the ground state from V_{NN}
Dispersive Optical Model

- **Claude Mahaux 1980s**
 - connect traditional optical potential to bound-state potential
 - crucial idea: use the dispersion relation for the nucleon self-energy
 - smart implementation: use it in its subtracted form
 - applied successfully to 40Ca and 208Pb in a limited energy window
 - employed traditional volume and surface absorption potentials and a local energy-dependent Hartree-Fock-like potential

- **Radiochemistry group at Washington University in St. Louis:**
 Charity and Sobotka propose to use it for a sequence of Ca isotopes \rightarrow data-driven extrapolations to the drip line
 - First results 2006 PRL
 - Subsequently \rightarrow attention to data below the Fermi energy related to ground-state properties \rightarrow Dispersive Self-energy Method (DSM)
Optical potential \(\longleftrightarrow\) nucleon self-energy

- e.g. Bell and Squires \(\rightarrow\) elastic T-matrix = reducible self-energy
 - relate dynamic (energy-dependent) real part to imaginary part
 - employ subtracted dispersion relation

General dispersion relation for self-energy:

\[
\text{Re } \Sigma(E) = \Sigma^{HF} - \frac{1}{\pi} \mathcal{P} \int_{E^+_T}^\infty dE' \frac{\text{Im } \Sigma(E')}{E - E'} + \frac{1}{\pi} \mathcal{P} \int_{-\infty}^{E^+_T} dE' \frac{\text{Im } \Sigma(E')}{E - E'}
\]

Calculated at the Fermi energy \(\varepsilon_F = \frac{1}{2} \left\{ (E_{0}^{A+1} - E_0^A) + (E_0^A - E_{0}^{A-1}) \right\}\)

\[
\text{Re } \Sigma(\varepsilon_F) = \Sigma^{HF} - \frac{1}{\pi} \mathcal{P} \int_{E^+_T}^\infty dE' \frac{\text{Im } \Sigma(E')}{\varepsilon_F - E'} + \frac{1}{\pi} \mathcal{P} \int_{-\infty}^{E^+_T} dE' \frac{\text{Im } \Sigma(E')}{\varepsilon_F - E'}
\]

Subtract

\[
\text{Re } \Sigma(E) = \text{Re } \Sigma^{HF}(\varepsilon_F) - \frac{1}{\pi} (\varepsilon_F - E) \mathcal{P} \int_{E^+_T}^\infty dE' \frac{\text{Im } \Sigma(E')}{(E - E')(\varepsilon_F - E')} + \frac{1}{\pi} (\varepsilon_F - E) \mathcal{P} \int_{-\infty}^{E^+_T} dE' \frac{\text{Im } \Sigma(E')}{(E - E')(\varepsilon_F - E')}
\]
Recent local DOM analysis
--> towards global

J. Mueller et al.
PRC83,064605 (2011), 1-32

reactions and structure
Elastic scattering data for protons and neutrons

- Abundant for stable targets
Local DOM ingredients and transfer reactions

- Overlap function
- p and n optical potential
- ADWA (developed by Ron Johnson)
- MSU-WashU:

\[{^{40,48}}Ca, {^{132}}Sn, {^{208}}Pb(d,p) \]

N. B. Nguyen, S. J. Waldecker, F. M. Nuñes, R. J. Charity, and W. H. Dickhoff

\[
\begin{align*}
E & \quad \text{CH+ws} & \quad \text{DOM} \\
2 & \quad 0.94 & \quad 0.72 \\
13 & \quad 0.82 & \quad 0.67 \\
19.3 & \quad 0.77 & \quad 0.68 \\
56 & \quad 1.1 & \quad 0.70
\end{align*}
\]
$^{132}\text{Sn}(d,p)$

- Does it work when the potentials are extrapolated?

- $E_d = 9.46$ MeV $^{132}\text{Sn}(d,p)^{133}\text{Sn}$
- CH89+ws $\rightarrow S_{1f7/2} = 1.1$
- DOM $\rightarrow S_{1f7/2} = 0.72$
Nonlocal DOM implementation PRL112,162503(2014)

• Particle number --> nonlocal imaginary part
• Microscopic FRPA & SRC --> different nonlocal properties above and below the Fermi energy
• Include charge density in fit
• Describe high-momentum nucleons <-->(e,e'p) data from JLab

Implications

• Changes the description of hadronic reactions because interior nucleon wave functions depend on non-locality
• Consistency test of the interpretation of (e,e'p) possible
• Independent “experimental” statement on size of three-body contribution to the energy of the ground state--> two-body only:

$$E/A = \frac{1}{2A} \sum_{\ell j} (2j + 1) \int_0^\infty dk k^2 \frac{k^2}{2m} n_{\ell j}(k) + \frac{1}{2A} \sum_{\ell j} (2j + 1) \int_0^\infty dk k^2 \int_{-\infty}^{\varepsilon_F} dE \ E S_{\ell j}(k; E)$$
Differential cross sections and analyzing powers

\[d\sigma/d\Omega [\text{mb/sr}] \]

\[\theta_{\text{cm}} [\text{deg}] \]

\[E_{\text{lab}} > 100 \]
\[40 < E_{\text{lab}} < 100 \]
\[20 < E_{\text{lab}} < 40 \]
\[10 < E_{\text{lab}} < 20 \]
\[0 < E_{\text{lab}} < 10 \]
Reaction (p&n) and total (n) cross sections

\[\text{Lab } E \]

\[\sigma [\text{mb}] \]

\[\sigma_0 \]

\[\sigma_1 \]

\[\sigma_2 \]

\[\sigma_3 \]

\[\sigma_\text{tot} \]

\(\text{Ca}^{40} \)

\(\text{p}^{+} \)

\(\text{n}^{+} \)

\(\sigma_\text{react} \)

\(\sigma_\text{tot} \)

\(E_{\text{Lab}} [\text{MeV}] \)
Nonlocal imaginary self-energy:
proton number $\rightarrow 19.88$
neutron number $\rightarrow 19.79$

$S_{0d3/2} = 0.76$
$S_{1s1/2} = 0.78$
0.15 larger than NIKHEF analysis!

$\ell \leq 5$

Below ε_F

^{40}Ca spectral function

Old $(p,2p)$ data from Liverpool
or $(e,e'p)$ from Saclay

reactions and structure
Linking nuclear reactions and nuclear structure \rightarrow DOM

Correlations from nuclear reactions

In $(e,e'p)$ proton still has to get out of the nucleus \rightarrow optical potential

Nucl. Phys. A553, 297c (1993)

Consistency study in progress

Different optical potentials \rightarrow different reduction factors \rightarrow for transfer reactions

Spectroscopic factors > 1??

PRL 93, 042501 (2004) HI

PRL 104, 112701 (2010) Transfer

Recent summary \rightarrow Jenny Lee

Different reactions different results??

PRL 93, 042501 (2004) HI

PRL 104, 112701 (2010) Transfer
Linking nuclear reactions and nuclear structure

- Extracting information on correlations beyond the independent particle model requires optical potentials in \((e,e'p), (d,p),(p,d),(p,pN)\), etc.
- Quality of \textit{ab initio} to describe elastic scattering or optical potentials should be improved substantially and urgently

\[40\text{Ca}\]

\frac{d\sigma}{d\Omega}(E_{\text{c.m.}} = 9.6 \text{ MeV})

\begin{align*}
\text{Coupled cluster calculation using overlap functions} \\
\text{PRC86,021602(R)(2012)} \\
\text{Probably limited to low energy}
\end{align*}

\begin{align*}
\text{Green's function result } \rightarrow \text{ optical potential with emphasis on SRC only} \\
\text{PRC84,044319(2011)}
\end{align*}
High-momentum components

Rohe, Sick et al. JLab data for Al and Fe (e,e'p) per proton
Jefferson Lab data per proton

- Pion/isobar contributions cannot be described
- Rescattering contributes some cross section (Barbieri, Lapikas)
Critical experimental data

Local version
radius correct...
PRC82,054306(2010)

Charge density ^{40}Ca
Non-locality essential
PRL112,162503(2014)

High-momentum nucleons \rightarrow JLab can also be described \rightarrow E/A
Historical perspective...

- The following authors identify the single-particle propagator (or self-energy) as central quantities in many-body systems:

 - Abrikosov, Gorkov, Dzyaloshinski
 (Methods of Quantum Field Theory in Statistical Physics, 1963 Dover Revised edition 1975),

 - Pines
 (The Many-body Problem, 1961 Addison Wesley reissued 1997),

 - Nozieres
 (Theory of Interacting Fermi Systems, 1964 Addison-Wesley reissued 1997),

 - Thouless

 - Anderson
 (Concepts in Solids, Benjamin 1963; World Scientific reissued 1998),

 - Schrieffer
 (Theory of Superconductivity, 1964 Benjamin revised 1983),

 - Migdal
 (Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Interscience, 1967),

 - Fetter and Walecka

- but apart from qualitative features, they don’t answer what it looks like for a real system like a nucleus!
Energy of the ground state

- **Energy sum rule** (Migdal, Galitski & Koltun)

\[
\frac{E}{A} = \frac{1}{2A} \sum_{\ell j} (2j + 1) \int_0^{\infty} dk k^2 \frac{k^2}{2m} n_{\ell j}(k) + \frac{1}{2A} \sum_{\ell j} (2j + 1) \int_0^{\infty} dk k^2 \int_{-\infty}^{E_F} dE\ E S_{\ell j}(k; E)
\]

- **Not** part of fit because it can only make a statement about the two-body contribution

- **Result:**
 - DOM ---> 7.91 MeV/A
 - T/A ---> 22.64 MeV/A
 - 10% of the particles (those with momenta above 1.4 fm-1) provide \(\sim \frac{2}{3} \) of the binding energy!
 - Exp. 8.55 MeV/A
 - Three-body ---> 0.64 MeV/A attraction
 - *Argonne GFMC* \(\sim \) 1.5 MeV/A attraction for three-body \(\leftrightarrow \) *Av18*
Do elastic scattering data tell us about correlations?

- **Scattering T-matrix**
 \[\Sigma_{\ell,j}(k, k'; E) = \Sigma_{\ell,j}^*(k, k'; E) + \int dq q^2 \Sigma_{\ell,j}^*(k, q; E)G^{(0)}(q; E)\Sigma_{\ell,j}(q, k'; E) \]

- **Free propagator**
 \[G^{(0)}(q; E) = \frac{1}{E - \hbar^2 q^2 / 2m + i\eta} \]

- **Propagator**
 \[G_{\ell,j}(k, k'; E) = \frac{\delta(k - k')}{k^2} G^{(0)}(k; E) + G^{(0)}(k; E)\Sigma_{\ell,j}(k, k'; E)G^{(0)}(k; E) \]

- **Spectral representation**
 \[G_{\ell,j}^p(k, k'; E) = \sum_n \frac{\phi_{\ell,j}^{n+}(k) \left[\phi_{\ell,j}^{n+}(k') \right]^*}{E - E_n^{A+1} + i\eta} + \sum_c \int_{T_c}^\infty dE' \frac{\chi_{cE'}_{\ell,j}(k) \left[\chi_{cE'}_{\ell,j}(k') \right]^*}{E - E' + i\eta} \]

- **Spectral density**
 \[S_{\ell,j}^p(k, k'; E) = \frac{i}{2\pi} \left[G_{\ell,j}^p(k, k'; E^+) - G_{\ell,j}^p(k, k'; E^-) \right] = \sum_c \chi_{cE}_{\ell,j}(k) \left[\chi_{cE}_{\ell,j}(k') \right]^* \]

- **Coordinate space**
 \[S_{\ell,j}^p(r, r'; E) = \sum_c \chi_{cE}_{\ell,j}(r) \left[\chi_{cE}_{\ell,j}(r') \right]^* \]

- **Elastic scattering explicit**
 \[\chi_{\ell,j}^{eE}(r) = \left[\frac{2mk_0}{\pi\hbar^2} \right]^{1/2} \left\{ j_\ell(k_0 r) + \int dk k^2 j_\ell(kr)G^{(0)}(k; E)\Sigma_{\ell,j}(k, k_0; E) \right\} \]

reactions and structure
Adding an $s_{1/2}$ neutron to ^{40}Ca

- Inelastically!
- Zero when there is no absorption!

Multiplied by r^2
• **One node now**

\[d_{3/2} \]

\[l = 2 \]
No nodes

- Asymptotically determined by inelasticity

\[l = 4 \ (g92) \]

\[S - |\chi|^2 \] [MeV$^{-1}$ fm$^{-1}$]

\[E \] [MeV]

\[r \] [fm]
Determine location of bound-state strength

• Fold spectral function with bound state wave function
 \[S_{\ell j}^{m+}(E) = \int dr \ r^2 \int dr' \ r'^2 \phi_{\ell j}^{n-}(r) S_{\ell j}^{p}(r, r'; E) \phi_{\ell j}^{n-}(r') \]

• \(\rightarrow \) Addition probability of bound orbit

• Also removal probability
 \[S_{\ell j}^{n-}(E) = \int dr \ r^2 \int dr' r'^2 \phi_{\ell j}^{n-}(r) S_{\ell j}^{h}(r, r'; E) \phi_{\ell j}^{n-}(r') \]

• Overlap function
 \[\sqrt{S_{\ell j}^{n}} \phi_{\ell j}^{n-}(r) = \langle \Psi_{n}^{A-1} | a_{r, \ell j} | \Psi_{0}^{A} \rangle \]

• Sum rule
 \[1 = n_{n\ell j} + d_{n\ell j} = \int_{-\infty}^{\varepsilon_{F}} dE \ S_{\ell j}^{n-}(E) + \int_{\varepsilon_{F}}^{\infty} dE \ S_{\ell j}^{n-}(E) \]
Spectral function for bound states

• $[0,200]$ MeV \rightarrow constrained by elastic scattering data

proton number \rightarrow 19.88
neutron number \rightarrow 19.79
$S_{0d3/2} = 0.76$
$S_{1s1/2} = 0.78$
0.15 larger than NIKHEF analysis!
Quantitatively

- Orbit closer to the continuum → more strength in the continuum
- Note “particle” orbits
- Drip-line nuclei have valence orbits very near the continuum

Table 1: Occupation and depletion numbers for bound orbits in 40Ca. $d_{nlj}[0, 200]$ depletion numbers have been integrated from 0 to 200 MeV. The fraction of the sum rule that is exhausted, is illustrated by $n_{nlj} + d_{nlj}[\varepsilon_F, 200]$. Last column $d_{nlj}[0, 200]$ depletion numbers for the CDBonn calculation.

<table>
<thead>
<tr>
<th>orbit</th>
<th>n_{nlj}</th>
<th>$d_{nlj}[0, 200]$</th>
<th>$n_{nlj} + d_{nlj}[\varepsilon_F, 200]$</th>
<th>$d_{nlj}[0, 200]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0s$_{1/2}$</td>
<td>0.926</td>
<td>0.032</td>
<td>0.958</td>
<td>0.035</td>
</tr>
<tr>
<td>0p$_{3/2}$</td>
<td>0.914</td>
<td>0.047</td>
<td>0.961</td>
<td>0.036</td>
</tr>
<tr>
<td>1p$_{1/2}$</td>
<td>0.906</td>
<td>0.051</td>
<td>0.957</td>
<td>0.038</td>
</tr>
<tr>
<td>0d$_{5/2}$</td>
<td>0.883</td>
<td>0.081</td>
<td>0.964</td>
<td>0.040</td>
</tr>
<tr>
<td>1s$_{1/2}$</td>
<td>0.871</td>
<td>0.091</td>
<td>0.962</td>
<td>0.038</td>
</tr>
<tr>
<td>0d$_{3/2}$</td>
<td>0.859</td>
<td>0.097</td>
<td>0.966</td>
<td>0.041</td>
</tr>
<tr>
<td>0f$_{7/2}$</td>
<td>0.046</td>
<td>0.202</td>
<td>0.970</td>
<td>0.034</td>
</tr>
<tr>
<td>0f$_{5/2}$</td>
<td>0.036</td>
<td>0.320</td>
<td>0.947</td>
<td>0.036</td>
</tr>
</tbody>
</table>

48Ca in progress → more later this week
In progress

- $^{48}\text{Ca} \rightarrow$ charge density has been measured
- Recent neutron elastic scattering data \rightarrow PRC83,064605(2011)
- Local DOM OLD Nonlocal DOM NEW

![Graphs showing $d\sigma/d\Omega$ vs. θ_{cm} for different energy bins for $n^{40}\text{Ca}$, $n^{48}\text{Ca}$, and $p^{48}\text{Ca}$ reactions.]
Preliminary results ^{48}Ca

- Density distributions
- DOM \rightarrow neutron distribution $\rightarrow R_n - R_p$

^{48}Ca nuclear charge distribution

![Graph showing the ^{48}Ca nuclear charge distribution with different distributions and their labels: Neutron matter distribution, DOM, Experiment.](image-url)
Conclusions

• It is possible to link nuclear reactions and nuclear structure

• Vehicle: nonlocal version of Dispersive Optical Model (Green’s function method) pioneered by Mahaux → DSM

• Can be used as input for analyzing nuclear reactions

• Can predict properties of exotic nuclei

• “Benchmark” for ab initio calculations: e.g. V_{NNN} → binding

• Can describe ground-state properties
 - charge density & momentum distribution
 - spectral properties including high-momentum Jefferson Lab data

• Elastic scattering determines depletion of bound orbitals

• Outlook: reanalyze many reactions with nonlocal potentials...

• For $N \gg Z$ exhibits sensitivity to properties of neutrons → weak charge in progress