Strongly correlated states of trapped ultracold fermions in a U(2) gauge potential

Matteo Rizzi
Johannes Gutenberg-Universität Mainz

Frontiers in quantum simulations with cold atoms
INT-Seattle, 9 April 2015

M.Burrello, **MR**, M.Roncaglia, A.Trombettoni, PRB 91, 115117 (2015)
Outline

- Motivation: beyond standard
- U(2) potential & deformed LL
- non-monotonic Haldane pseudopotentials
- Novel incompressible states: Haffnian?
- Entanglement spectrum
- Conclusions
Quantum Engineering

• analog implementation of solid-state systems, with added values:
 • isolated neutral quantum systems (long coherence times)
 • high tunability of microscopic parameters (also interactions!)
 • access to many microscopic observables

• GOAL: answering questions untreatable by classical calculations (!?)

\[H = -J \sum_{\langle i,j \rangle} b_i^\dagger b_j + \sum_i \epsilon_i \hat{n}_i + \frac{1}{2} U \sum_i \hat{n}_i (\hat{n}_i - 1) \]

M.Burrello, MR, M.Roncaglia, A. Trombettoni
PRB 91, 115117 (2015)
Quantum Engineering

• BUT can we go beyond emulation / simulation of existing regimes?

e.g. Haldane model @ ETH

M. Burrello, MR, M. Roncaglia, A. Trombettoni
PRB 91, 115117 (2015)
Quantum Engineering

• BUT can we go beyond emulation / simulation of existing regimes?

 e.g. Haldane model @ ETH

• HERE, focus on Fractional Quantum Hall states:
 • a wealth of exotic states & topological properties predicted “mathematically” for “strange” interaction & gauge potential forms
 • but in semiconductors 2DEG, almost no tunability!

Strongly correlated states of trapped ultracold fermions in a U(2) gauge potential

matteo.rizzi@uni-mainz.de

M.Burrello, MR, M.Roncaglia, A. Trombettoni
PRB 91, 115117 (2015)
Gauge potentials in cold atoms

- fast rotation
- lattice shaking
- adiabatic Berry phase
- Raman hopping

Dalibard, Gerbier, Juzeliunas, and Öhberg, RMP 83, 1523 (2011)

Strongly correlated states of trapped ultracold fermions in a U(2) gauge potential

matteo.rizzi@uni-mainz.de

M.Burrello, MR,
M.Roncaglia, A. Trombettoni
PRB 91, 115117 (2015)
Motivation: beyond standard

- U(2) potential & deformed LL
- non-monotonic Haldane pseudopotentials
- Novel incompressible states: Haffnian?
- Entanglement spectrum
- Conclusions
Outline

• Motivation: beyond standard

• U(2) potential & deformed LL

• non-monotonic Haldane pseudopotentials

• Novel incompressible states: Haffnian?

• Entanglement spectrum

• Conclusions
Single particle Hamiltonian

\[H = (p_x I + A_x)^2 + (p_y I + A_y)^2 \]

\[m = 1/2 \]
\[\hbar = e = c = 1 \]

- **U(1) magnetic field** + **SU(2) spin-orbit** = **U(2) gauge**

\[\mathbf{A} = \left(-\frac{yB}{2} I + q\sigma_x; \frac{xB}{2} I + q\sigma_y, ; 0 \right) \]

\[[A_x, A_y] \neq 0 \]

- spatial components of \(F^{\mu\nu} = [D^\mu, D^\nu] \) are not everything!

\[\mathbf{F} = \mathbf{\nabla} \times \mathbf{A} + i\mathbf{A} \times \mathbf{A} = (B I - 2q^2\sigma_z) \hat{z} \]

\[U(2) \neq U(1) \times U(1) \]
Single particle Hamiltonian

\[H = (p_x \mathbb{I} + A_x)^2 + (p_y \mathbb{I} + A_y)^2 + \frac{\omega^2 r^2}{4} \mathbb{I} \]

- \(m = 1/2 \)
- \(\hbar = e = c = 1 \)

- **U(1) magnetic field** + **SU(2) spin-orbit** = U(2) gauge

\[\vec{A} = \left(-\frac{y B}{2} \mathbb{I}, \frac{x B}{2} \mathbb{I} + q \sigma_x, \frac{y B}{2} \mathbb{I} + q \sigma_y, 0 \right) \]

\[[A_x, A_y] \neq 0 \]

- spatial components of \(F^{\mu\nu} = [D^\mu, D^\nu] \) are not everything!

\[\vec{F} = \vec{\nabla} \times \vec{A} + i \vec{A} \times \vec{A} = (B \mathbb{I} - 2q^2 \sigma_z) \hat{z} \]

\(U(2) \neq U(1) \times U(1) \)

- weak harmonic confinement

\[B \equiv \sqrt{B^2 + \omega^2} \]

\[\Delta \equiv B - B \sim \omega^2 / 2B \]

\[-L_z \Delta \]
Single particle Hamiltonian

\[H = (p_x \mathbb{I} + A_x)^2 + (p_y \mathbb{I} + A_y)^2 + \frac{\omega^2 r^2}{4} \mathbb{I} + V_s(x, y) \]

\[m = \frac{1}{2} \]
\[\hbar = e = c = 1 \]

• \text{U}(1) magnetic field + \text{SU}(2) spin-orbit = \text{U}(2) gauge

\[\vec{A} = \left(-\frac{yB}{2} \mathbb{I} + q \sigma_x; \frac{xB}{2} \mathbb{I} + q \sigma_y, 0 \right) \]

\[[A_x, A_y] \neq 0 \]

• spatial components of \(F^{\mu\nu} = [D^\mu, D^\nu] \) are not everything!

\[\vec{F} = \vec{\nabla} \times \vec{A} + i \vec{A} \times \vec{A} = (B \mathbb{I} - 2q^2 \sigma_z) \hat{z} \]

\[U(2) \neq U(1) \times U(1) \]

• weak harmonic confinement

\[B \equiv \sqrt{B^2 + \omega^2} \]

\[\Delta \equiv B - \mathcal{B} \sim \omega^2 / 2B \]

\[-L_z \Delta \]

• compensating Zeeman field

\[V_s(x, y) = -q \Delta (y \sigma_x - x \sigma_y) \]

Strongly correlated states of trapped ultracold fermions in a \text{U}(2) gauge potential

matteo.rizzi@uni-mainz.de

M.Burrello, MR, M.Roncaglia, A. Trombettoni
PRB 91, 115117 (2015)
Deformed Landau Levels

\[H = \left(p_x - \frac{yB}{2} + q\sigma_x \right)^2 + \left(p_y + \frac{xB}{2} + q\sigma_y \right)^2 - L_z \Delta \]

• q=0: orbital eigenstates \(\psi_{n,m} \)

• Lowest Landau Level (LLL) approx.

\[N\Delta \ll 2B \quad k_B T \ll 2B \]

Strongly correlated states of trapped ultracold fermions in a U(2) gauge potential

M.Burrello, MR, M.Roncaglia, A. Trombettoni
PRB 91, 115117 (2015)

matteo.rizzi@uni-mainz.de
Deformed Landau Levels

\[H = \left(p_x - \frac{yB}{2} + q\sigma_x \right)^2 + \left(p_y + \frac{xB}{2} + q\sigma_y \right)^2 - L_z\Delta \]

- \(q=0 \): orbital eigenstates \(\psi_{n,m} \)
- Lowest Landau Level (LLL) approx.
 \(N\Delta \ll 2B \quad k_BT \ll 2B \)
- \(q\neq0 \): Jaynes-Cummings in the basis
 \(\{ \psi_{n-1,m} \uparrow, \psi_{n,m} \downarrow \} \)

\[H_{n,m} = \tilde{\varepsilon}_{n,m} \mathbb{I} + D_n \begin{pmatrix} -\cos \varphi_n & \sin \varphi_n \\ \sin \varphi_n & \cos \varphi_n \end{pmatrix} \]

\[\sin \varphi_n = \frac{2q\sqrt{2Bn}}{\sqrt{(B-\Delta/2)^2 + 8q^2Bn}} \]

\[\varepsilon_{n,m} = \tilde{\varepsilon}_{n,m} - D_n \]

M.Burrello, MR, M.Roncaglia, A. Trombettoni
PRB 91, 115117 (2015)
Experimental considerations

- **U(1) magnetic field + SU(2) spin-orbit**

 M. Burrello, A. Trombettoni, PRA 84, 043625 (2011)

 \(k_d = k_1 - k_2 = k_d e_x \)

- **access to LLL regime: difficult by rotation!**

 A. L. Fetter, Rev. Mod. Phys. 81, 647 (2009)

 \(k_d = k_1 - k_2 = k_d e_x \)

 \(\varepsilon = \delta \omega / \omega \)

Strongly correlated states of trapped ultracold fermions in a U(2) gauge potential

matteo.rizzi@uni-mainz.de

M.Burrello, MR,
M.Roncaglia, A. Trombettoni
PRB 91, 115117 (2015)
Experimental considerations

• U(1) magnetic field + SU(2) spin-orbit

M. Burrello, A. Trombettoni, PRA 84, 043625 (2011)

• new hopes: synthetic optical gauge potentials & dimensions

see I. Spielman, I. Bloch, M. Lewenstein, etc.

• some rough estimates

\[B \ell^2 \approx 1 \land \ell \approx 0.5 \mu m \rightarrow B \approx 4 \cdot 10^{-19} \text{g/s} \]

\[\omega \approx 10 \div 100 \text{Hz} \rightarrow \Delta / B \approx 0.005 \div 0.05 \]

\[\hbar / q \approx 1 \mu m \rightarrow q^2 / \hbar B \approx 0.1 \div 5 \]
Outline

- Motivation: beyond standard
- U(2) potential & deformed LL
- non-monotonic Haldane pseudopotentials
- Novel incompressible states: Haffnian?
- Entanglement spectrum
- Conclusions
Outline

• Motivation: beyond standard
• U(2) potential & deformed LL
• non-monotonic Haldane pseudopotentials
• Novel incompressible states: Haffnian?
• Entanglement spectrum
• Conclusions

Strongly correlated states of trapped ultracold fermions in a U(2) gauge potential
matteo.rizzi@uni-mainz.de
M.Burrello, MR, M.Roncaglia, A. Trombettoni
arXiv:1411.5962
Haldane pseudopotentials

- partial wave decomposition of (central) interaction potentials

\[\mathcal{H}_{\text{int}} = \sum_{M} \sum_{m_{\text{rel}}} W_{m_{\text{rel}}} \sum_{m_1, m_2} g [m_{\text{rel}}, M, m_1] g [m_{\text{rel}}, M, m_2] c_{M-m_1}^\dagger c_{m_1}^\dagger c_{m_2} c_{M-m_2} \]

- polarized electrons in Coloumb potential \(W_1 \gg W_3 \gg \ldots \)

\[\nu = 1/3 \quad \Psi_{1/3} = \prod_{i<j} (z_i - z_j)^3 \equiv \Theta^3 \]

- \(s \)-wave scattering approx. for cold bosons! only \(W_0 \neq 0 \)

\[\mathcal{H}_2 = c_2 \sum_{i<j} \delta(z_i - z_j) \quad c_2 = \sqrt{8\pi a/\xi_z} \quad \nu = 1/2 \quad \Psi_{1/2} = \prod_{i<j} (z_i - z_j)^2 \equiv \Theta^2 \]

- LL filling factor \(\nu \approx \lim_{N \to \infty} \frac{N}{m_{\text{max}}} \)

Strongly correlated states of trapped ultracold fermions in a U(2) gauge potential

matteo.rizzi@uni-mainz.de

M.Burrello, MR, M.Roncaglia, A. Trombettoni
PRB 91, 115117 (2015)
Haldane pseudopotentials

\[H_{\text{int}} = \sum_{M} \sum_{m_{\text{rel}}} W_{m_{\text{rel}}} \sum_{m_1, m_2} g [m_{\text{rel}}, M, m_1] g [m_{\text{rel}}, M, m_2] c_{M-m_1}^{\dagger} c_{m_1}^\dagger c_{m_2} c_{M-m_2} \]

- spin1/2 fermions within U(2) DLL

\[W_{m_{\text{rel}}}^{(n)} = V_{n-1,n-1}^{m_{\text{rel}}} \cos^4 \frac{\varphi_n}{2} + V_{n,n}^{m_{\text{rel}}} \sin^4 \frac{\varphi_n}{2} + V_{n,n-1}^{m_{\text{rel}}} \sin^2 \varphi_n \]

Strongly correlated states of trapped ultracold fermions in a U(2) gauge potential

matteo.rizzi@uni-mainz.de

M.Burrello, MR, M.Roncaglia, A. Trombettoni
PRB 91, 115117 (2015)
Haldane pseudopotentials

\[H_{\text{int}} = \sum_M \sum_{m_{\text{rel}}} W_{m_{\text{rel}}} \sum_{m_1, m_2} g [m_{\text{rel}}, M, m_1] g [m_{\text{rel}}, M, m_2] c_{M-m_1}^\dagger c_{m_1}^\dagger c_{m_2} c_{M-m_2} \]

• spin 1/2 fermions within U(2) DLL

\[W_{m_{\text{rel}}}^{(n)} = V_{m_{\text{rel}}}^{n-1} \cos^4 \frac{\varphi_n}{2} + \sin^4 \frac{\varphi_n}{2} + V_{m_{\text{rel}}}^{n,n-1} \frac{\sin^2 \varphi_n}{2} \]

• only interspecies contact interactions

\[\hat{V} = v \sum_{i<j} \delta (z_i - z_j) \langle \uparrow \downarrow | \uparrow \downarrow \rangle \]

! Non-Monotonic HP!
? new FQH states?
Haldane pseudopotentials

$$\mathcal{H}_{\text{int}} = \sum_{M} \sum_{m_{\text{rel}}} W_{m_{\text{rel}}} \sum_{m_1, m_2} g [m_{\text{rel}}, M, m_1] g [m_{\text{rel}}, M, m_2] c^\dagger_{M-m_1} c^\dagger_{m_1} c_{m_2} c_{M-m_2}$$

- spin $\frac{1}{2}$ fermions within U(2) DLL

$$W_{m_{\text{rel}}}^{(n)} = V_{n-1, n-1} \cos^4 \frac{\varphi_n}{2} + V_{n, n} \sin^4 \frac{\varphi_n}{2} + V_{n, n-1} \sin^2 \frac{\varphi_n}{2}$$

- only interspecies contact interactions

$$\hat{V} = v \sum_{i<j} \delta (z_i - z_j) | \uparrow \downarrow \rangle \langle \uparrow \downarrow |$$

! Non-Monotonic HP!
? new FQH states?

Dipoles needed for bosons

M.Burrello, MR,
M.Roncaglia, A. Trombettoni
PRB 91, 115117 (2015)
Incompressible states

- $[\mathcal{H}, L_z] = 0$: yrast spectrum (disk)
 \[E(L) = E(L) + L \Delta \quad L_z = Nn - \sum ma_m^\dagger a_m \]

- incompressibility gap
 \[D(L) = \min[\delta E(L), E(L) - E(L - 1)] \]
 decides over stabilized states

- quasi-hole excitation $\Delta_{qh} \sim \delta$

Strongly correlated states
of trapped ultracold fermions
in a U(2) gauge potential

M. Burrello, MR, M. Roncaglia, A. Trombettoni
PRB 91, 115117 (2015)

matteo.rizzi@uni-mainz.de
Laughlin ansatz $\nu = 1/3 \quad \Psi_{1/3} = \prod_{i<j} (z_i - z_j)^3 \equiv \Theta^3$

incompressibility gap $E_{qp} \approx D(L_{\text{Lau}}) \approx 0.013\nu \quad L_{\text{Lau}} \equiv 3N(N - 1)/2$
Laughlin ansatz: $\nu = 1/3$
$\Psi_{1/3} = \prod_{i<j} (z_i - z_j)^3 \equiv \Theta^3$

Incompressibility gap: $E_{qp} \approx D(L_{Lau}) \approx 0.013\nu$
$L_{Lau} \equiv 3N(N-1)/2$

Plateau lengths: $(N, N-2, N-4, \ldots) = CF$ theory

G. Dev, J. K. Jain, PRB 45, 1223 (1992)
Laughlin ansatz \(\nu = 1/3 \quad \Psi_{1/3} = \prod_{i<j} (z_i - z_j)^3 \equiv \Theta^3 \)

incompressibility gap \(E_{qp} \simeq D(L_{Lau}) \approx 0.013\nu \quad L_{Lau} \equiv 3N(N - 1)/2 \)

plateau lengths \((N, N-2, N-4, \ldots) = CF theory\)
Strongly correlated states of trapped ultracold fermions in a U(2) gauge potential

E(L)

D(L)

\[E(L) \]

\[D(L) \]

- numerics with small particle numbers ==> labelling complicated

e.g. \(N=10 \) \(L=111 \) Lau + 3qp or Jain 2/5 ?

Strongly correlated states of trapped ultracold fermions in a U(2) gauge potential

1st DLL: Jain states

\[E(L) \]
\[D(L) \]

• numerics with small particle numbers ==> labelling complicated
e.g. \(N=10 \) \(L=111 \) Lau + 3qp or \boxed{\text{Jain 2/5}}?

M. Burrello, MR, M. Roncaglia, A. Trombettoni PRB 91, 115117 (2015)

matteo.rizzi@uni-mainz.de
1st DLL: other stable states

\[L = 85 \]

\[\rho(\vec{r}, \vec{r}_0) \]

- regular pattern of ground states: \(\sim \) pseudo-crystals (atoms + fluxes)

\[\text{NO Pfaffian} \quad \Psi_{Pf} \propto \text{Pf} \left[\frac{1}{z_i - z_j} \right] \prod_{i<j} (z_i - z_j)^2 \quad \text{at} \quad L = N(N - 1) - N/2 = 85 \]

Strongly correlated states of trapped ultracold fermions in a U(2) gauge potential

matteo.rizzi@uni-mainz.de

M.Burrello, MR,
M.Roncaglia, A. Trombettoni
PRB 91, 115117 (2015)
Outline

- Motivation: beyond standard
- U(2) potential & deformed LL
- non-monotonic Haldane pseudopotentials
- Novel incompressible states: Haffnian?
- Entanglement spectrum
- Conclusions
Outline

• Motivation: beyond standard
• U(2) potential & deformed LL
• non-monotonic Haldane pseudopotentials
• Novel incompressible states: Haffnian?
• Entanglement spectrum
• Conclusions

Strongly correlated states
of trapped ultracold fermions
in a U(2) gauge potential

matteo.rizzi@uni-mainz.de

M.Burrello, MR,
M.Roncaglia, A. Trombettoni
arXiv:1411.5962
• Laughlin ansatz \(\nu = 1/5 \) \(\Psi_{1/5} = \prod_{i<j} (z_i - z_j)^5 \equiv \Theta^5 \)

• incompressibility gap \(E_{\text{qp}}^{(1/5)} \approx D(L_{\text{Lau}}) \approx 0.005\nu \approx 0.3E_{\text{qp}}^{(1/3)} \)

• smoothened transitions due to \(W_3 \) ...
2nd DLL: three regimes

\[N = 8 \]

Quasiparticles \[\nu = 1/5 \]

Vortices \[\nu = 1 \]

- Laughlin ansatz \[\nu = 1/5 \quad \Psi_{1/5} = \prod_{i<j} (z_i - z_j)^5 \equiv \Theta^5 \]

Strongly correlated states of trapped ultracold fermions in a U(2) gauge potential

M.Burrello, MR, M.Roncaglia, A. Trombettoni
PRB 91, 115117 (2015)
2nd DLL: three regimes

Strongly correlated states of trapped ultracold fermions in a U(2) gauge potential

$N = 8$

Quasiparticles
\[\nu = \frac{1}{5} \]

Vortices
\[\nu = 1 \]

• skyrmionic spin texture around vortex cores

M. Burrello, MR, M. Roncaglia, A. Trombettoni
PRB 91, 115117 (2015)
2nd DLL: three regimes

\[N = 8 \]

- **Quasiparticles**
 - \(\nu = 1/5 \)
 - new regime !?

- **Vortices**
 - \(\nu = 1 \)

- **NO Laughlin**
 - \(\nu = 1/3 \)
 \[\nu = 1/3 \quad \Psi_{1/3} = \prod_{i<j} (z_i - z_j)^3 = \Theta^3 \]

- **Haffnian !?**
 - \(\nu = 1/3 \)
 \[\nu = 1/3 \quad \Psi_{\text{Hf}} \sim \mathcal{S} \left(\frac{1}{(z_1 - z_2)^2 \ldots (z_{N-1} - z_N)^2} \right) \prod_{i,j} (z_i - z_j)^3 \]

M.Burrello, MR, M.Roncaglia, A. Trombettoni, PRB 91, 115117 (2015)

Strongly correlated states of trapped ultracold fermions in a U(2) gauge potential

matteo.rizzi@uni-mainz.de
Strongly correlated states of trapped ultracold fermions in a U(2) gauge potential

\(L = 72 \)
\[\rho(\vec{r}, \vec{r}_0) \]

\(L = 76 \)
\[\rho(\vec{r}, \vec{r}_0) \]

\(L = 80 \)
\[\rho(\vec{r}, \vec{r}_0) \]

- Haffnian !?
 \(L_{Hf} = 76 \)
 \[\nu = 1/3 \quad \Psi_{Hf} \sim S \left(\frac{1}{(z_1 - z_2)^2 \ldots (z_{N-1} - z_N)^2} \right) \prod_{i,j} (z_i - z_j)^3 \]

- effective (d-wave) pairing \(\iff \frac{N}{2} = 4 \) peaks

- stabilized states (by \(\Delta \)) are rather \(L_{Hf} \pm \frac{N}{2} \)

- three-body interactions needed …

M.Burrello, MR, M.Roncaglia, A. Trombettoni
PRB 91, 115117 (2015)
Outline

- Motivation: beyond standard
- U(2) potential & deformed LL
- non-monotonic Haldane pseudopotentials
- Novel incompressible states: Haffnian?
- Entanglement spectrum
- Conclusions
Motivation: beyond standard

U(2) potential & deformed LL

non-monotonic Haldane pseudopotentials

Novel incompressible states: Haffnian?

Entanglement spectrum

Conclusions
Entanglement spectrum: intro

- Quantum information approach: (robust & intrinsic)

\[S = A \cup \bar{A} \quad \rho_A = \text{Tr}_A |\psi\rangle\langle\psi| = \sum_l \lambda_l |l\rangle\langle l| \quad \text{ES}_l \equiv -\ln \lambda_l \]

H. Li and F.D.M. Haldane, PRL 101, 010504 (2008)

- Orbital partition ~ real space partition

\[\rho_A^{(O)} = \left(\sum_{\{\bar{n}''\}} \Psi^e_{\bar{n}\otimes\bar{n}''} \Psi_{\bar{n}'\otimes\bar{n}''} \right) |\bar{n}\rangle_A \langle \bar{n}'| \]

- Particle partition irrespective of position

\[\rho_A^{(P)} = \left(\langle \psi | \prod_{j \leq N_A} a^\dagger_{m_j} \prod_{k \leq N_A} a_{m_k} |\psi\rangle \right) |\bar{m}\rangle\langle \bar{m}'| \]

A. Sterdyniak, N. Regnault and B. A. Bernevig, PRL 106, 100405 (2011)
ES: Laughlin 1/3

- orbital partition \sim real space partition
 \[N_A = \sum_{m \leq M_A} n_m \quad L_A = \sum_{m \leq M_A} m n_m \]

\[L_{1/3} = 3N(N - 1) = 135 \]

1st DLL

2nd DLL

- counting Laughlin edge modes 1, 1, 2, 3, 5, 7, 11, ...

- no clear ES gap ...

Strongly correlated states of trapped ultracold fermions in a U(2) gauge potential

M.Burrello, MR, M.Roncaglia, A. Trombettoni

PRB 91, 115117 (2015)
ES: vortices

- **particle partition** irrespective of position
 \[
 \rho_A^{(P)} = \left(\langle \psi | \prod_{j \leq N_A} a_{m_j}^\dagger \prod_{k \leq N_A} a_{m_k} | \psi \rangle \right) | \bar{m} \rangle \langle \bar{m}' |
 \]

\[L = 65 = N(N - 1)/2 + 2N \]

\[L = 75 = N(N - 1)/2 + 3N \]

\[N = 10 \]
\[N_A = 5 \]
\[N_A(N - N_A) = 25 \]

\[L_{A,\text{min}} = 20 \]

- **consistent with central vortex ansatz**
 \[
 \Psi_{V_p} = \prod_i z_i^p \prod_{i < j} (z_i - z_j) \quad \rightarrow \quad L_{A,\text{min}} = N_A(N_A - 1)/2 + pN_A
 \]

Strongly correlated states of trapped ultracold fermions in a U(2) gauge potential

matteo.rizzi@uni-mainz.de

M.Burrello, MR, M.Roncaglia, A. Trombettoni
PRB 91, 115117 (2015)
ES: Haffnian candidate

- **particle partition** irrespective of position

\[
\rho_A^{(P)} = \left(\langle \psi \big| \prod_{j \leq N_A} a^\dagger_{m_j} \prod_{k \leq N_A} a_{m_k} | \psi \rangle \right) | \vec{m} \rangle \langle \vec{m}' |
\]

\[
L = 3N(N - 1) - N = 76
\]

- **conformal limit to cancel geom. factors**

\[
\psi_{\vec{m}}^{(CL)} \equiv \psi_{\vec{m}} \cdot \prod_{j \leq N} \sqrt{m_j}!
\]

Outline

• Motivation: beyond standard
• U(2) potential & deformed LL
• non-monotonic Haldane pseudopotentials
• Novel incompressible states: Haffnian?

• Entanglement spectrum

• Conclusions
Outline

- Motivation: beyond standard
- U(2) potential & deformed LL
- non-monotonic Haldane pseudopotentials
- Novel incompressible states: Haffnian?
- Entanglement spectrum
- Conclusions

Strongly correlated states of trapped ultracold fermions in a U(2) gauge potential

matteo.rizzi@uni-mainz.de

M.Burrello, MR, M.Roncaglia, A. Trombettoni
arXiv:1411.5962
Conclusions & Outlook

- **U(2) potential:**
 - i) deformed LL (spin textures…)
 - ii) non-monotonic HP from s-wave only

- Novel incompressible states: Haffnian? d-wave pairing?

- Entanglement spectrum -- theoretical detector

- other LL deforming potentials? absence of Zeeman comp.?

- degeneracy points between LL’s?

- three-body terms? dissipation-induced?

M.Burrello, MR, M.Roncaglia, A. Trombettoni PRB 91, 115117 (2015)
Strongly correlated states of trapped ultracold fermions in a U(2) gauge potential

matteo.rizzi@uni-mainz.de

M. Burrello, MR, M. Roncaglia, A. Trombettoni
PRB 91, 115117 (2015)