Charmonia and bottomonia in p-Pb: what is available from run-1?

Some “delicate” items: prompt vs inclusive, reference pp cross sections....

Results and discussion of the comparison with models (ALICE-centric)

From p-Pb to Pb-Pb; CNM extrapolations
LHC: p-Pb data taking

Carried out on January/February 2013

Beam energy: $\sqrt{s_{NN}} = 5.02$ TeV

Energy asymmetry of the LHC beams ($E_p = 4$ TeV, $E_{Pb} = 1.58$ A·TeV)

\rightarrow rapidity shift $\Delta y = 0.465$ in the proton direction

Beam configurations:

Data collected with two beam configurations (swapping the beams)

- $2.03 < y_{CMS} < 3.53$
- $-4.46 < y_{CMS} < -2.96$
- $-1.37 < y_{CMS} < 0.43$

Integrated luminosities (ALICE)

- 5.01 ± 0.17 nb$^{-1}$ (p-Pb sample, forward rapidity)
- 51.4 ± 1.6 µb$^{-1}$ (p-Pb sample, mid-rapidity)
- 5.81 ± 0.18 nb$^{-1}$ (Pb-p sample, backward rapidity)
Summary of charmonium results

<table>
<thead>
<tr>
<th>J/ψ</th>
<th>ALICE</th>
<th>CMS</th>
<th>LHCb</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{pA} vs y</td>
<td>♦</td>
<td></td>
<td>♦</td>
</tr>
<tr>
<td>R_{pA}^{prompt} vs y</td>
<td>♦</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{pA} vs p_T</td>
<td>♦</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q_{pA} vs centr.</td>
<td>♦</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rel. yield vs $N_{ch}(E_T)$</td>
<td>♦</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\psi(2S)$</th>
<th>ALICE</th>
<th>CMS</th>
<th>LHCb</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{pA} vs y</td>
<td>♦</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{pA}^{prompt} vs y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{pA} vs p_T</td>
<td>♦</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q_{pA} vs centr.</td>
<td>♦</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rel. yield vs $N_{ch}(E_T)$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additionally

- ALICE
- Double ratios $\psi(2S)/J/ψ$
 - vs y
 - vs p_T
 - vs centrality

- ALICE \leftrightarrow LHCb: similar forw./backw. y-range (slightly larger for LHCb)
- Satisfactory for forw/backw $J/ψ$, fairly good for $\psi(2S)$, CMS results will be welcome
Summary of bottomonium results

Additionally

- CMS
- Double ratios $\Upsilon(2S)/\Upsilon(1S)$
- $\Upsilon(3S)/\Upsilon(1S)$
 - Integrated
 - vs $N_{ch}(E_T)$

- Just scratching the surface
 - more data needed
Estimating the pp reference

- No pp data available for the moment at $\sqrt{s}=5.02$ TeV
- Negotiations with the machine for having a short pp run in fall 2015

Problem
- If a short run is chosen (few days)
 - Take those days from the “pp period”, get low L_{int}
- If a longer run is needed (few weeks)
 - Take those days from the “Pb-Pb period”, get large L_{int}
 - Delicate balance

- Look in some detail at the procedure for J/ψ at forward/backward y
- **ALICE/LHCb joint task force** → converge on an **interpolation procedure** using pp data at $\sqrt{s} = 2.76$, 7 and 8 TeV

<table>
<thead>
<tr>
<th>Experiment</th>
<th>\sqrt{s} [TeV]</th>
<th>process</th>
<th>$\sigma(J/\psi)$ [µb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALICE</td>
<td>2.76</td>
<td>inclusive</td>
<td>$3.34 \pm 0.13 \pm 0.27$</td>
</tr>
<tr>
<td>ALICE</td>
<td>7</td>
<td>inclusive</td>
<td>$6.78 \pm 0.04 \pm 0.64$</td>
</tr>
<tr>
<td>LHCb</td>
<td>2.76</td>
<td>inclusive</td>
<td>$3.48 \pm 0.06 \pm 0.27$</td>
</tr>
<tr>
<td>LHCb</td>
<td>7</td>
<td>inclusive</td>
<td>$6.55 \pm 0.01 \pm 0.37$</td>
</tr>
<tr>
<td>LHCb</td>
<td>8</td>
<td>inclusive</td>
<td>$7.59 \pm 0.01 \pm 0.55$</td>
</tr>
</tbody>
</table>

Typical uncertainties on existing data: up to $\sim 10\%$, dominated by systematics

LHCb-CONF-2013-013; ALICE-PUBLIC-2013-002
Interpolation procedure

- Interpolation procedure makes use of
 - Empirical approach
 - Theoretical calculations (LO CEM and FONLL)

\[
\sigma(\sqrt{s}) = \begin{cases}
p_0 + \sqrt{s} \ p_1 \\
(\sqrt{s}/p_0)^{p_1} \\
p_0(1 - \exp(-\sqrt{s}/p_1))
\end{cases} \quad \text{linear} \\
\text{power law} \\
\text{exponential}.
\]

<table>
<thead>
<tr>
<th>model</th>
<th>cross-section $[\mu b]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear</td>
<td>5.17 ± 0.41</td>
</tr>
<tr>
<td>power law</td>
<td>5.26 ± 0.40</td>
</tr>
<tr>
<td>exponential</td>
<td>5.38 ± 0.40</td>
</tr>
<tr>
<td>average</td>
<td>$5.28 \pm 0.40 \pm 0.10$</td>
</tr>
</tbody>
</table>

Small relative spread
Max. deviation \rightarrow syst unc.
Interpolation procedure

- Calculate cross sections at $\sqrt{s} = 2.76$, 5 and 7 TeV using CEM and FONLL
- **Fix the normalization** in order to fit existing 2.76 and 7 TeV data
- Re-normalize 5 TeV calculation using the fit results

- Use **maximum difference** between CEM/FONLL and empirical fit as a further uncertainty

\[
\sigma_{\text{incl}} = 5.28 \pm 0.40_{\text{exp}} \pm 0.10_{\text{inter}} \pm 0.05_{\text{theo}} \text{mb} = 5.28 \pm 0.42 \text{mb}.
\]
Rapidity dependence

- First interpolate bin-per-bin the measured cross sections, with the same procedure used for the integrated results.
- The pp and p-Pb y-coverage is not exactly the same (up to 0.5 units mismatch)
 → Extrapolate with various empirical functions.
p_T dependence

- **Forward rapidity analysis**
 - 3-step procedure
 1) √s-interpolation (between 2.76 and 7 TeV) of d²σ/dydp_T
 2) Account for rapidity “mismatch” via empirical shapes (as for y-dependence)
 3) (small) correction for ⟨p_T⟩ dependence on rapidity

- **Central rapidity analysis**
 1) Empirical √s-interpolation at y=0 (data by PHENIX, CDF, ALICE)
 1a) neglect small y-shift in p-Pb wrt pp (negligible wrt uncertainties)
 2) Use scaling properties of p_T distributions plotted vs p_T/⟨p_T⟩
 (get ⟨p_T⟩ at 5 TeV from an interpolation of mid-rapidity results at various √s)
ψ(2S) interpolation

- **R_{pPb}ψ(2S)** is obtained via the **double ratio** with respect to J/ψ

\[
R_{pA}^{ψ(2S)} = R_{pA}^{J/ψ} \times \frac{σ_{pA}^{ψ(2S)}}{σ_{pA}^{J/ψ}} \times \frac{σ_{pp}^{J/ψ}}{σ_{pp}^{ψ(2S)}}
\]

- **Problem:** no reference pp ratio at \(\sqrt{s} = 5\) TeV
- **Solution:** use ALICE \(\sqrt{s} = 7\) TeV results, estimating the \(\sqrt{s}\)-dependence of the ratio \(ψ(2S)/J/ψ \rightarrow \) small
- **Verified by**
 - Extrapolating the ALICE value of the ratio at \(\sqrt{s} = 7\) TeV from forward to central rapidity (use Gaussian y-shape from J/ψ data and \(y_{max}\) scaling for \(ψ(2S)\))
 - Interpolating linearly (or via exponential or polynomial) between CDF and ALICE to \(\sqrt{s} = 5\) TeV, \(y=0\)
 - Extrapolating to \(\sqrt{s} = 5\) TeV, forward-y
- Get a **4% difference** between \(\sqrt{s} = 7\) TeV and \(\sqrt{s} = 5\) TeV at forward-y
- Take conservatively an **8% systematic uncertainty**
Prompt vs inclusive R_{pA}

- LHCb and CMS can separate the J/ψ component from B-decays thanks to their tracking capability in the vertex region (Si detectors).
- ALICE can do that at midrapidity but NOT at forward rapidity.
 - This limitation will be overcome after LS2 \rightarrow Muon Forward Tracker.

- Can the presence of J/ψ from B-decays create a sizeable difference between $R_{pA}^{\text{inclusive}}$ and R_{pA}^{prompt}?

$$R_{pA}^{\text{prompt}} = \frac{R_{pA}^{\text{inclusive}} - R_{pA}^{\text{non-prompt}}}{1 - f_b} \cdot f_b$$

- f_B increases with p_T
- f_B decreases with y
R_{pA} for open beauty

- Results from
 - LHCb (forward y, low p_T)
 - ALICE (central y, low p_T)
 - CMS (central y, high p_T)

show no strong effects in pPb collisions
From R_{pA}^{incl} to R_{pA}^{prompt}

- Assume $R_{pA}^{\text{non-prompt}} = 1$

The value of R_{pA}^{prompt} can differ significantly from R_{pA}^{prompt} at large f_B.
Is the difference significant for ALICE?

Exercise

1) Assume $R_{pPb}^{\text{non-prompt}} = 1$
2) Plot R_{pPb}^{prompt} vs f_B for the values of $R_{pPb}^{\text{inclusive}}$ measured by ALICE
3) Plot the ALICE point at the f_B value corresponding to the p_T where the measurement is performed

Result

For ALL the p_T range accessible to ALICE, the difference between $R_{pPb}^{\text{inclusive}}$ and the calculated R_{pPb}^{prompt} is smaller than the uncertainties
p-Pb results vs “centrality”

- **Fixed-target experiments**
 - Simply use different targets to “tune” the amount of nuclear matter crossed by the probe under study
 - No need to develop dedicated algorithms to slice results in centrality
- **Collider experiments**
 - Each change of nucleus implies several days of tuning
 - Impractical, need to define centrality classes

- Loose correlation between \(N_{\text{part}} \) and typical centrality-related observables
Biases on centrality determination

- Various centrality estimators can be used, e.g.
 - Number of tracklets at $|\eta_{\text{lab}}| < 1.4$ (CL1)
 - Signal amplitude on scintillator hodoscope $2 < \eta_{\text{lab}} < 5.1$ (V0A)
 - Signal from slow nucleons in ZeroDegree Calorimeters (ZDC)

- When N_{coll} is obtained from CL1 and V0A estimators → significant bias
- Biases related to several effects
 - Large fluctuations on multiplicity at fixed N_{part}
 - Jet veto effect (from hard processes in peripheral collisions)
 - Geometric bias (related to increasing b_{NN} in peripheral collisions)
Hybrid method

- It has been found that the bias is larger when the rapidity gap between the considered probe and the centrality estimator becomes small.

- Solution: use the ZDC (very large y) to slice in centrality → no bias on particle production at central rapidity.

- However, the connection between slow-nucleon signal and centrality is not so well established → take the N_{coll} distribution from each ZDC-selected bin assuming $dN/d\eta$ at mid-rapidity is $\propto N_{\text{part}}$ (or that the target-going charged particle multiplicity is $\propto N_{\text{part}}$).
Now, to the results...

- Number of **signal** events
- Forward rapidity \rightarrow **fit** of the invariant mass spectra (CB2 + background)

- Low $\psi(2S)$ statistics at high p_T, but better S/B

- $N_{J/\psi} \sim 67000, N_{\psi(2S)} \sim 1100$ (p-Pb)
- $N_{J/\psi} \sim 57000, N_{\psi(2S)} \sim 700$ (Pb-p)
Mid-rapidity J/ψ

- Background through mixed-events
- Normalized to same-event sample in the continuum region

- Less statistics than at forw/backw γ (no trigger on electron pairs)
- $\Upsilon(1S)$: enough statistics for two rapidity bins \(\rightarrow\) to be published
- $\Upsilon(2S)$ peak has a $\sim 3\sigma$ significance
J/ψ results: R_{pPb} vs y

- Strong suppression at forward and mid-y: no suppression at backward y
- Data are consistent with models including shadowing and/or energy loss
- Color Glass Condensates (CGC) inspired models underestimate data
- Dissociation cross section $\sigma_{\text{abs}} < 2$ mb cannot be excluded
The p_T dependence of J/ψ $R_{p\text{Pb}}$ has been studied in the three y ranges

- **backward-**y: negligible p_T dependence, R_{pA} compatible with unity
- **mid-**y: small p_T dependence, R_{pA} compatible with unity for $p_T>3\text{GeV}/c$
- **forward-**y: strong R_{pA} increase with p_T

Comparison with theory:

- Data consistent with pure shadowing calculations and with coherent energy loss models (overestimating J/ψ suppression at low p_T, forward-y)
- CGC calculation overestimate suppression at forward-y
The ratio of the forward and backward yields in the common y-range $2.96 < |y_{\text{cms}}| < 3.53$ is free from the reference-related uncertainties.

- Less sensitive than R_{pPb} to the comparison with theory models, as there can be agreement with models that systematically overestimate or underestimate R_{pPb}.

For more details, please refer to the graphs and data provided.
Event activity dependence: Q_{pPb}

- At forward-y, strong J/ψ Q_{pA} decrease from low to high event activity.
- At backward-y, Q_{pA} consistent with unity, event activity dependence not very significant.

\[Q_{pA}^{J/\psi} = \frac{Y_{pA}^{J/\psi}}{\langle T_{pA} \rangle \sigma_{pp}^{J/\psi}} \]

Inclusive $J/\psi \rightarrow \mu^+ \mu^-$, p-Pb $\sqrt{s_{NN}} = 5.02$ TeV, $0 < p_T < 15$ GeV/c

- $2.03 < y_{cms} < 3.53$, p-going direction
- $-4.46 < y_{cms} < -2.96$, Pb-going direction
- $Q_{p\text{Pb}}$ shows a strong dependence on event activity, y, and p_T.
- **Low event activity classes:** similar backward and forward-y behaviour, consistent with no modification, with a negligible p_T dependence.
- **High event activity classes:** p_T-dependent $Q_{p\text{A}}$ behaviour. Difference between forward and backward-y is larger for increasing event activity class.
$\psi(2S)/J/\psi$

- A strong **decrease** of the $\psi(2S)$ production in p-Pb, relative to J/ψ, is observed with respect to the pp measurement ($2.5<y_{\text{cms}}<4$, $\sqrt{s}=7\text{TeV}$)

- The double ratio allows a direct comparison of the J/ψ and $\psi(2S)$ production yields between experiments

- Similar effect seen by PHENIX in d-Au collisions, at mid-y, at $\sqrt{s_{NN}}=200\text{ GeV}$

- $[\psi(2S)/J/\psi]_{\text{pp}}$ variation between ($\sqrt{s}=7\text{TeV}$, $2.5<y<4$) and ($\sqrt{s}=5.02\text{TeV}$, $2.03<y<3.53$ or -$4.46<y<-2.96$) evaluated using CDF and LHCb data (amounts to 8% depending on the assumptions → included in the systematic uncertainty)
The $\psi(2S)$ suppression with respect to binary scaled pp yield can be quantified with the nuclear modification factor

$$R_{pA}^{\psi(2S)} = R_{pA}^{J/\psi} \times \frac{\sigma_{pA}^{\psi(2S)}}{\sigma_{pA}^{J/\psi}} \times \frac{\sigma_{pp}^{J/\psi}}{\sigma_{pp}^{\psi(2S)}}$$

(again, used $\sqrt{s}=7$TeV pp ratio including an 8% systematic uncertainty related to the different kinematics)

- $\psi(2S)$ suppression is stronger than the J/ψ one and reaches a factor ~ 2 wrt pp
- Same initial state CNM effects (shadowing and coherent energy loss) expected for both J/ψ and $\psi(2S)$

Theoretical predictions in disagreement with $\psi(2S)$ result

Other mechanisms needed to explain $\psi(2S)$ behaviour?
$\psi(2S)$ R_{pPb} vs Y_{cms}

- The $\psi(2S)$ suppression with respect to binary scaled pp yield can be quantified with the nuclear modification factor.
- Can the stronger suppression of the weakly bound $\psi(2S)$ be due to break-up of the fully formed resonance in CNM?

Possible if formation time $(\tau_f \sim 0.05-0.15 \text{ fm/c}) <$ crossing time (τ_c)

- Forward-y: $\tau_c \sim 10^{-4} \text{ fm/c}$
- Backward-y: $\tau_c \sim 7 \cdot 10^{-2} \text{ fm/c}$

Break-up effects excluded at forward-y

At backward-y, since $\tau_f \sim \tau_c$, break-up in CNM can hardly explain the very strong difference between J/ψ and $\psi(2S)$ suppressions.

Final state effects related to the (hadronic) medium created in the p-Pb collisions?
$\psi(2S) \ R_{pPb} \ vs \ p_T$

- The p_T-dependence of the R_{pPb} has also been investigated.

![Graphs showing R_{pPb} vs p_T](image)

- As already observed for the p_T-integrated results, $\psi(2S)$ is more suppressed than the J/ψ.

- Theoretical models are in fair agreement with the J/ψ, but clearly overestimate the $\psi(2S)$ results.

arXiv:1405.3796
The sizeable $\psi(2S)$ statistics in p-Pb collisions allows the differential study of $\psi(2S)$ production vs p_T.

Different p_T correspond to different crossing times, with τ_c decreasing with increasing p_T.

If $\psi(2S)$ breaks-up in CNM, the effect should be more important at backward-y and low p_T.

No clear p_T dependence is observed at $y<0$, within uncertainties.
The $\psi (2S)$ Q_{pA} is evaluated as a function of the event activity. Q_{pA} instead of R_{pA} due to potential bias from the centrality estimator, which are not related to nuclear effects.

$$Q_{\psi (2S)}^{pA} = Q_{pA}^{J/\psi} \times \frac{\sigma_{\psi (2S)}^{pA}}{\sigma_{pA}^{J/\psi}} \times \frac{\sigma_{pp}^{J/\psi}}{\sigma_{pp}^{\psi (2S)}}$$

with

$$Q_{pA}^{J/\psi} = \frac{Y_{pA}^{J/\psi}}{T_{pA}^{mult} \cdot \sigma_{pp}^{J/\psi}}$$

- Clear $\psi (2S)$ suppression, increasing with event activity, both in p-Pb and Pb-p collisions.
- Rather similar $\psi (2S)$ suppression at both forward and backward rapidities.
$\psi(2S) \, Q_{pPb}$ vs event activity

The $\psi(2S) \, Q_{pA}$ is evaluated as a function of the event activity.

Rather similar $\psi(2S)$ suppression, increasing with N_{coll}, for both ALICE and PHENIX results.
J/ψ and ψ(2S) Q_{ppb} vs event activity

- J/ψ and ψ(2S) Q_{pA} are compared vs event activity

- **forward-γ:** J/ψ and ψ(2S) show a similar decreasing pattern vs event activity

- **backward-γ:** the J/ψ and ψ(2S) behaviour is different, with the ψ(2S) significantly more suppressed for largest event activity classes

→ Another hint for ψ(2S) suppression in the (hadronic) medium?
- The inclusion of an "effective" comover cross section $\sigma_{\text{co-J}/\psi}=0.65$ mb on top of nuclear shadowing gives qualitative agreement with data.

- Same comover cross section from SPS to LHC?

- Looks like a fortuitous accident, seen the differences in
 - Nature of the medium
 - Absence of modeling of time evolution

- Or there is some deeper meaning to that?
ψ(2S) looks good too

- **Factor 10 larger comover cross section** for ψ(2S)
 → May be justified by geometrical considerations, but...
 does the “medium” see any difference between a ccbar evolving to a J/ψ or to a ψ(2S) before the resonance is formed?

- Anyway **excellent qualitative agreement**!
- Comparison using the same x-axis variable **mandatory**
- **Interplay between modeling of expansion** (between τ_0 and freeze-out), comover density and comover cross section values. Can the data give constraints here?
Energy loss approach (François)

- y-range covered at LHC: well inside the "applicability" region
- Good description in a pure E_{loss} approach
- Interplay with shadowing/saturation?
- The model works well also where it should not!
 - By chance?
 - Or is there a deeper meaning?
γ(1S) results

- Reference pp cross sections obtained via energy interpolation at mid-rapidity, using CDF@1.8 TeV, D0@1.96 TeV, CMS@2.76 TeV, CMS@7 TeV data + forward-y extrapolation using various PYTHIA tunes
- Alternative approach using LHCb data for final release of the results

- Consistent with no suppression at backward rapidity
- Indications of suppression at forward rapidity
\(\gamma(1S) \): model comparisons

- Ferreiro et al. [EPJC 73 (2013) 2427]
 - Generic 2\(\rightarrow \)2 production model at LO
 - EPS09 shadowing parameterization at LO
 - Fair agreement with measured \(R_{pPb} \), although slightly overestimated in the antishadowing region

- Vogt [arXiv:1301.3395]
 - CEM production model at NLO
 - EPS09 shadowing parameterization at NLO
 - Fair agreement with measured \(R_{pPb} \) within uncertainties, although slightly overestimated it
Arleo et al. [JHEP 1303 (2013) 122]
- Model including a contribution from coherent parton energy loss, with or without shadowing (EPS09)
- **Forward**: Better agreement with E_{loss} and shadowing
- **Backward**: Better agreement with E_{loss} only

LHCb results are **systematically above** the ALICE ones, although within uncertainties

Clear situation where more data are mandatory
CNM effects from p-Pb to Pb-Pb

- x-values in Pb-Pb $\sqrt{s_{NN}}=2.76$ TeV, $2.5 < y_{\text{cms}} < 4$
 \[2.10^{-5} < x < 9.10^{-5} \quad 1.10^{-2} < x < 6.10^{-2} \]

- x-values in p-Pb $\sqrt{s_{NN}}=5.02$ TeV, $2.03 < y_{\text{cms}} < 3.53$ \[2.10^{-5} < x < 8.10^{-5} \]
- x-values in p-Pb $\sqrt{s_{NN}}=5.02$ TeV, $-4.46 < y_{\text{cms}} < -2.96$ \[1.10^{-2} < x < 5.10^{-2} \]

→ Partial compensation between $\sqrt{s_{NN}}$ shift and y-shift

- If CNM effects are dominated by shadowing
 - $R_{\text{PbPb}}^{\text{CNM}} = R_{\text{pPb}} \times R_{\text{Pbp}} = 0.75 \pm 0.10 \pm 0.12$
 - $R_{\text{PbPb}}^{\text{meas}} = 0.57 \pm 0.01 \pm 0.09$

 “compatible” within 1-σ

- Same kind of “agreement” in the energy loss approach

...which does not exclude hot matter effects which partly compensate each other
p_T-dependence

- Perform the extrapolation as a function of p_T

No more “agreement” between Pb-Pb and CNM extrapolations

- High-p_T suppression is not related to CNM effects

- At low p_T, CNM suppression is of the same size of the effects observed in Pb-Pb: recombination?
Conclusions

- Rather extensive set of results from LHC run-1 in p-Pb are available
 - For J/ψ, differential studies vs p_T, y and centrality with good statistics
 - For $\psi(2S)$, statistics is smaller but interesting results anyway
 - CMS results at high-p_T and mid-rapidity would be welcome

- For Υ states, a larger data set would be beneficial

- Question: better running again at $\sqrt{s_{NN}} = 5$ TeV or go to $\sqrt{s_{NN}} = 8$ TeV?
 Discussion with machine and experiments ongoing, inputs useful

- Comparisons with theory models
 - J/ψ: qualitative agreement with energy loss (+ shadowing?), no (or small) extra-absorption
 - $\psi(2S)$: evidence for extra-suppression at backward-y (comovers?)
 - Υ states: more data needed for a meaningful comparison
Backup
Direct B in p-Pb (mid-y)

- Use FONLL for pp reference cross section
- R_{pA}^{FONLL} is compatible with unity for all three B-mesons

$B^+ \rightarrow J/\psi K^+$
$B^0 \rightarrow J/\psi K^*$
$B_S \rightarrow J/\psi \phi$

$\langle p_T \rangle > 10$ GeV/c
R_{pPb} & R_{AA} for jets and b jets

- Discriminating variable → Flight distance of the secondary vertex
- b-jet fraction → template fits to secondary vertex inv. mass distributions
- b-jet R_{AA} is much smaller than R_{pPb} → strong in-medium effects
- No jet modification in p-Pb collisions
- No flavour dependence of the effect

S. Chatrchyan et al. (CMS), arXiv:1312.4198
Do not forget CNM...

- In the γ sector, the influence of CNM effects is small

Hints for suppression of $\gamma(1S)$ at forward rapidity?

- (Small) relative suppression of $\gamma(2S)$ and $\gamma(3S)$ wrt $\gamma(1S)$ at mid-rapidity
- Qualitative agreement with models within uncertainties
- CNM cannot account for all of the effect observed in Pb-Pb
Strong correlation of charmonia/bottomonia/open charm relative yields as a function of quantities related to the hadronic activity in the event.

Observation related to the role of MPI in pp also in the hard sector?