Physics opportunities at A Fixed-Target Experiment at the LHC (AFTER@LHC) and why not FCC?

Jean-Philippe Lansberg
IPN Orsay, CNRS/IN2P3, Université Paris-Sud

INT Program INT-14-3
Heavy Flavor and Electromagnetic Probes in Heavy Ion Collisions

thanks to M. Anselmino (Torino), R. Arnaldi (Torino), S.J. Brodsky (SLAC), V. Chambert (IPNO), J.P. Didelez (IPNO), E.G. Ferreiro (USC), F. Fleuret (LLR), B. Genolini (IPNO), Y. Gao (Tsinghua), C. Hadjidakis (IPNO), I. Hrvinačova (IPNO), C. Lorcé (SLAC), L. Massacrier (LAL), R. Mikkelsen (Aarhus), A. Rakotozafindrabe (CEA), P. Rosier (IPNO), I. Schienbein (LPSC), E. Scomparin (Torino), B. Trzeciak (Prague U.), U.I. Uggerhøj (Aarhus), R. Ulrich (KIT), Y. Zhang (Tsinghua)+ W. den Dunnen, C. Pisano, M. Schlegel
Part I

Introduction
Generalities

- \(pp \) or \(pA \) collisions with a 7 TeV proton beam on a fixed target occur at a CM energy \(\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \text{ GeV} \)
Generalities

- *pp* or *pA* collisions with a 7 TeV *p*+ on a fixed target occur at a CM energy
 \[
 \sqrt{s} = \sqrt{2m_N E_p} \approx 115 \text{ GeV}
 \]

- In a symmetric collider mode, \(\sqrt{s} = 2E_p \), i.e. much larger
Generalities

- *pp* or *pA* collisions with a 7 TeV *p*+ on a fixed target occur at a CM energy
 \[\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \text{ GeV} \]

- In a symmetric collider mode, \(\sqrt{s} = 2E_p \), i.e. much larger

- Benefit of the fixed target mode: boost: \(\gamma_{CM} = \frac{\sqrt{s}}{2m_p} \simeq 60 \)
Generalities

- *pp* or *pA* collisions with a 7 TeV *p* on a fixed target occur at a CM energy
 \[\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \text{ GeV} \]

- In a symmetric collider mode, \(\sqrt{s} = 2E_p \), i.e. much larger

- Benefit of the fixed target mode: boost: \(\gamma_{CM} = \frac{\sqrt{s}}{2m_p} \simeq 60 \)

 - Consider a photon emitted at 90° w.r.t. the z-axis (beam) in the CM:
 \(p_{z,CM} = 0, \ E_{CM}^{\gamma} = p_T \)
Generalities

- **pp** or **pA** collisions with a 7 TeV **p** on a fixed target occur at a CM energy
 \[\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \text{ GeV} \]

- In a symmetric collider mode, \(\sqrt{s} = 2E_p \), i.e. much larger

- Benefit of the fixed target mode: boost: \(\gamma_{CM} = \frac{\sqrt{s}}{2m_p} \approx 60 \)

- Consider a photon emitted at 90° w.r.t. the z-axis (beam) in the CM:

 \[
 \begin{pmatrix}
 E_{Lab} \\
 p_{z,Lab}
 \end{pmatrix}
 =
 \begin{pmatrix}
 \gamma & \gamma \beta \\
 \gamma \beta & \gamma
 \end{pmatrix}
 \begin{pmatrix}
 p_T \\
 0
 \end{pmatrix}
 (p_{z,CM} = 0, E_{CM}^\gamma = p_T)
Generalities

- *pp* or *pA* collisions with a 7 TeV *p* on a fixed target occur at a CM energy $\sqrt{s} = \sqrt{2m_N E_p} \approx 115$ GeV

- In a symmetric collider mode, $\sqrt{s} = 2E_p$, i.e. much larger

- Benefit of the fixed target mode: boost: $\gamma_{CM} = \frac{\sqrt{s}}{2m_p} \approx 60$

 - Consider a photon emitted at 90° w.r.t. the z-axis (beam) in the CM:
 $$\begin{pmatrix} E_{Lab} \\ p_{z,Lab} \end{pmatrix} = \begin{pmatrix} \gamma & \gamma \beta \\ \gamma \beta & \gamma \end{pmatrix} \begin{pmatrix} p_T \\ 0 \end{pmatrix}$$

 - $p_{z,Lab} \approx 60p_T$! [A 67 MeV γ from a π^0 at rest in the CM can easily be detected.]
Generalities

- *pp* or *pA* collisions with a *7 TeV* \(p^+ \) on a fixed target occur at a CM energy
 \[\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \text{ GeV} \]

- In a symmetric collider mode, \(\sqrt{s} = 2E_p \), i.e. much larger

- Benefit of the fixed target mode: boost: \(\gamma_{CM}^L = \frac{\sqrt{s}}{2m_p} \approx 60 \)

 - Consider a photon emitted at 90° w.r.t. the z-axis (beam) in the CM:
 \[\begin{pmatrix} E_{Lab} \\ p_{z,Lab} \end{pmatrix} = \begin{pmatrix} \gamma & \gamma \beta \\ \gamma \beta & \gamma \end{pmatrix} \begin{pmatrix} p_T \\ 0 \end{pmatrix} \]
 \(p_{z,Lab} \approx 60p_T \) ! [A 67 MeV \(\gamma \) from a \(\pi^0 \) at rest in the CM can easily be detected.]

 - Angle in the Lab. frame: \(\tan \theta = \frac{p_T}{p_{z,Lab}} = \frac{1}{\gamma \beta} \Rightarrow \theta \approx 1^\circ \).

 [Rapidity shift: \(\Delta y = \tanh^{-1} \beta \approx 4.8 \)]
Generalities

- pp or pA collisions with a 7 TeV p^+ on a fixed target occur at a CM energy
 \[\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \text{ GeV} \]

- In a symmetric collider mode, $\sqrt{s} = 2E_p$, i.e. much larger

- Benefit of the fixed target mode: boost: $\gamma_{CM}^\text{Lab} = \frac{\sqrt{s}}{2m_p} \approx 60$

 - Consider a photon emitted at 90° w.r.t. the z-axis (beam) in the CM:
 \[\begin{pmatrix} E_{\text{Lab}} \\ p_{z,\text{Lab}} \end{pmatrix} = \begin{pmatrix} \gamma & \gamma \beta \\ \gamma \beta & \gamma \end{pmatrix} \begin{pmatrix} p_T \\ 0 \end{pmatrix} \]
 \[p_{z,\text{Lab}} \approx 60p_T ! \ [A 67 \text{ MeV } \gamma \text{ from a } \pi^0 \text{ at rest in the CM can easily be detected.]}

 - Angle in the Lab. frame: $\tan \theta = \frac{p_T}{p_{z,\text{Lab}}} = \frac{1}{\gamma \beta} \Rightarrow \theta \approx 1^\circ$.

 [Rapidity shift: $\Delta y = \tanh^{-1} \beta \approx 4.8$]

 - The entire forward CM hemisphere ($y_{CM} > 0$) within $0^\circ \leq \theta_{\text{Lab}} \leq 1^\circ$

 [$y_{CM} = 0 \Rightarrow y_{\text{Lab}} \approx 4.8$]
Generalities

- *pp* or *pA* collisions with a **7 TeV p** on a fixed target occur at a CM energy

\[\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \text{ GeV} \]

- In a symmetric collider mode, \(\sqrt{s} = 2E_p \), i.e. much larger

- Benefit of the fixed target mode: boost: \(\gamma_{CM}^\text{Lab} = \frac{\sqrt{s}}{2m_p} \approx 60 \)

 - Consider a photon emitted at \(90^\circ \) w.r.t. the z-axis (beam) in the CM:

 \[
 \begin{pmatrix}
 E_{\text{Lab}} \\
 p_{z,\text{Lab}}
 \end{pmatrix} =
 \begin{pmatrix}
 \gamma & \gamma \beta \\
 \gamma \beta & \gamma
 \end{pmatrix}
 \begin{pmatrix}
 p_T \\
 0
 \end{pmatrix}
 \]

 \(p_{z,\text{Lab}} \approx 60p_T \) ! [A 67 MeV \(\gamma \) from a \(\pi^0 \) at rest in the CM can easily be detected.]

 - Angle in the Lab. frame: \(\tan \theta = \frac{p_T}{p_{z,\text{Lab}}} = \frac{1}{\gamma \beta} \Rightarrow \theta \approx 1^\circ \).

 [Rapidity shift: \(\Delta y = tanh^{-1} \beta \approx 4.8 \)]

 - The entire forward CM hemisphere \((y_{CM} > 0) \) within \(0^\circ \leq \theta_{\text{Lab}} \leq 1^\circ \)

 \[y_{CM} = 0 \Rightarrow y_{\text{Lab}} \approx 4.8 \]

 - **Good thing**: small forward detector \(\equiv \) large acceptance

 - **Bad thing**: high multiplicity \(\Rightarrow \) absorber \(\Rightarrow \) physics limitation
Backward physics?

- Let’s adopt a novel strategy and look at larger angles.
Backward physics?

Let’s adopt a **novel strategy** and look at **larger angles**

- Advantages:
 - reduced multiplicities at large(r) angles
 - **access to partons with momentum fraction** $x \to 1$ in the target
 - last, but not least, the beam pipe is in practice

 not a geometrical constrain at $\theta_{CM} \simeq 180^\circ$
Backward physics?

- Let’s adopt a **novel strategy** and look at **larger angles**
- **Advantages:**
 - reduced multiplicities at large(r) angles
 - **access to partons with momentum fraction** \(x \to 1 \) in the target
 - last, but not least, the beam pipe is in practice

 not a geometrical constrain at \(\theta_{CM} \approx 180^\circ \)

Diagram:

- **Hadron center-of-mass system**
 - \(x_1 \approx x_2 \)

- **Target rest frame**
 - \(x_1 \approx x_2 \)
Backward physics?

- Let’s adopt a **novel strategy** and look at **larger angles**
- **Advantages:**
 - reduced multiplicities at large(r) angles
 - **access to partons with momentum fraction** $x \rightarrow 1$ in the target
 - last, but not least, the beam pipe is in practice **not a geometrical constrain at** $\theta_{CM} \simeq 180^\circ$

Diagram

Hadron center-of-mass system

$x_1 \simeq x_2$

$x_1 \ll x_2$

Target rest frame

$x_1 \approx x_2$

$x_1 \ll x_2$
Backward physics?

- Let’s adopt a **novel strategy** and look at **larger angles**
- Advantages:
 - reduced multiplicities at large(r) angles
 - **access to partons with momentum fraction** $x \to 1$ **in the target**
 - last, but not least, the beam pipe is in practice **not a geometrical constrain at** $\theta_{CM} \simeq 180^\circ$

\[
x_1 \approx x_2
\]

\[
x_1 \ll x_2
\]

backward physics = large-x_2 physics
First systematic access to the target-rapidity region

\((x_F \to -1) \)
First systematic access to the target-rapidity region $(x_F \to -1)$

J/ψ suppression in pA collisions

- x_F systematically studied at fixed target experiments up to +1
First systematic access to the target-rapidity region

\(x_F \rightarrow -1 \)

\[J/\psi \text{ suppression in } pA \text{ collisions} \]

\(x_F \) systematically studied at fixed target experiments up to +1

Hera-B was the only one to really explore \(x_F < 0 \), up to -0.3
First systematic access to the target-rapidity region ($x_F \to -1$)

- x_F systematically studied at fixed target experiments up to +1
- Hera-B was the only one to really explore $x_F < 0$, up to -0.3
- PHENIX @ RHIC: $-0.1 < x_F < 0.1$ [could be wider with Υ, but low stat.]
- CMS/ATLAS: $|x_F| < 5 \cdot 10^{-3}$; LHCb: $5 \cdot 10^{-3} < x_F < 4 \cdot 10^{-2}$
The target-rapidity region: the uncharted territory

First systematic access to the target-rapidity region
($x_F \rightarrow -1$)

J/ψ suppression in pA collisions

- x_F systematically studied at fixed target experiments up to +1
- Hera-B was the only one to really explore $x_F < 0$, up to -0.3
- PHENIX @ RHIC: $-0.1 < x_F < 0.1$ [could be wider with Υ, but low stat.]
- CMS/ATLAS: $|x_F| < 5 \cdot 10^{-3}$; LHCb: $5 \cdot 10^{-3} < x_F < 4 \cdot 10^{-2}$
First systematic access to the target-rapidity region

\((x_F \rightarrow -1) \)

- \(x_F \) systematically studied at fixed target experiments up to +1
- Hera-B was the only one to really explore \(x_F < 0 \), up to -0.3
- PHENIX @ RHIC: \(-0.1 < x_F < 0.1\) [could be wider with \(\Upsilon \), but low stat.]
- CMS/ATLAS: \(|x_F| < 5 \cdot 10^{-3}\); LHCb: \(5 \cdot 10^{-3} < x_F < 4 \cdot 10^{-2}\)
- If we measure \(\Upsilon(b \bar{b}) \) at \(y_{\text{cms}} \approx -2.5 \) \(\Rightarrow x_F \approx \frac{2m_{\Upsilon}}{\sqrt{s}} \sinh(y_{\text{cms}}) \approx -1 \)
The beam extraction

★ The LHC beam may be extracted using “Strong crystalline field” without any decrease in performance of the LHC!

The beam extraction

★ The LHC beam may be extracted using “Strong crystalline field” without any decrease in performance of the LHC!

The beam extraction

★ The LHC beam may be extracted using “Strong crystalline field” without any decrease in performance of the LHC!

★ Illustration for collimation

A solid state primary collimator-scatterer

Bent-crystal as primary collimator
The beam extraction

★ The LHC beam may be extracted using “Strong crystalline field” without any decrease in performance of the LHC!

★ Illustration for collimation

★ Tests will be performed on the LHC beam: LUA9 proposal approved by the LHCC
The beam extraction

★ The LHC beam may be extracted using “Strong crystalline field” without any decrease in performance of the LHC!

★ Illustration for collimation

★ Tests will be performed on the LHC beam:

LUA9 proposal approved by the LHCC

★ 2 crystals and 2 goniometers already installed in the LHC beampipe
The beam extraction

- Inter-crystalline fields are huge

Ge (110), 450 GeV protons

2000 T!
The beam extraction

- Inter-crystalline fields are huge

Ge (110), 450 GeV protons

- The channeling efficiency is high for a deflection of a few mrad
The beam extraction

- Inter-crystalline fields are huge

![Graph showing deflection efficiency vs. deflection angle for Ge (110), 450 GeV protons.](image)

- The channeling efficiency is high for a deflection of a few mrad
- One can extract a significant part of the beam loss \((10^9 \, p^+ \, s^{-1})\)
The beam extraction

- Inter-crystalline fields are huge

- The channeling efficiency is high for a deflection of a few mrad
- One can extract a significant part of the beam loss ($10^9 p^+ s^{-1}$)
- Simple and robust way to extract the most energetic beam ever:
Luminosities with proton beams

- Expected proton flux $\Phi_{beam} = 5 \times 10^8 \text{ p}^+\text{s}^{-1}$
Luminosities with proton beams

- Expected proton flux $\Phi_{beam} = 5 \times 10^8 \, p^+ s^{-1}$
- Instantaneous Luminosity:

$$\mathcal{L} = \Phi_{beam} \times N_{\text{target}} = N_{beam} \times (\rho \times \ell \times N_A) / A$$

[ℓ: target thickness (for instance 1 cm)]
Luminosities with proton beams

- Expected proton flux $\Phi_{\text{beam}} = 5 \times 10^8 \text{ p}^+ \text{s}^{-1}$
- Instantaneous Luminosity:
 \[
 L = \Phi_{\text{beam}} \times N_{\text{target}} = N_{\text{beam}} \times (\rho \times \ell \times N_A)/A
 \]
 \[\ell: \text{target thickness (for instance 1cm)}\]
- Integrated luminosity: $\int dt L$ over 10^7 s for p^+ and 10^6 for Pb
 \[\text{[the so-called LHC years]}\]
Luminosities with proton beams

- **Expected proton flux** $\Phi_{beam} = 5 \times 10^8 \, p^+ s^{-1}$
- **Instantaneous Luminosity:**

$$\mathcal{L} = \Phi_{beam} \times N_{target} = N_{beam} \times (\rho \times \ell \times N_A)/A$$

[\ell: target thickness (for instance 1cm)]

- **Integrated luminosity:** $\int dt \mathcal{L}$ over $10^7 \, s$ for p^+ and 10^6 for Pb

 [the so-called LHC years]

<table>
<thead>
<tr>
<th>Target</th>
<th>ρ (g.cm$^{-3}$)</th>
<th>A</th>
<th>\mathcal{L} (µb$^{-1}$.s$^{-1}$)</th>
<th>$\int \mathcal{L}$ (pb$^{-1}$.yr$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sol. H$_2$</td>
<td>0.09</td>
<td>1</td>
<td>26</td>
<td>260</td>
</tr>
<tr>
<td>Liq. H$_2$</td>
<td>0.07</td>
<td>1</td>
<td>20</td>
<td>200</td>
</tr>
<tr>
<td>Liq. D$_2$</td>
<td>0.16</td>
<td>2</td>
<td>24</td>
<td>240</td>
</tr>
<tr>
<td>Be</td>
<td>1.85</td>
<td>9</td>
<td>62</td>
<td>620</td>
</tr>
<tr>
<td>Cu</td>
<td>8.96</td>
<td>64</td>
<td>42</td>
<td>420</td>
</tr>
<tr>
<td>W</td>
<td>19.1</td>
<td>185</td>
<td>31</td>
<td>310</td>
</tr>
<tr>
<td>Pb</td>
<td>11.35</td>
<td>207</td>
<td>16</td>
<td>160</td>
</tr>
</tbody>
</table>
1 meter-long liquid H_2 & D_2 targets can be used (see NA51, ...)

This gives: $L_{H_2/D_2} \approx 20 \text{ fb}^{-1}$

Recycling the LHC beam loss, one gets a luminosity comparable to the LHC itself!

PHENIX lumi in their decadal plan:
- Run14pp 12 pb^{-1} @ $\sqrt{s_{NN}} = 200 \text{ GeV}$
- Run14 dAu 0.15 pb^{-1} @ $\sqrt{s_{NN}} = 200 \text{ GeV}$

AFTER vs PHENIX@RHIC: 3 orders of magnitude larger
Luminosities with proton beams II

- 1 meter-long liquid H_2 & D_2 targets can be used (see NA51, ...)
- This gives: $\mathcal{L}_{H_2/D_2} \simeq 20 \text{ fb}^{-1} \text{ y}^{-1}$
Luminosities with proton beams II

- 1 meter-long liquid H_2 & D_2 targets can be used (see NA51, ...)
- This gives: $\mathcal{L}_{H_2/D_2} \simeq 20\, \text{fb}^{-1}\, \text{y}^{-1}$
- Recycling the LHC beam loss, one gets a luminosity comparable to the LHC itself!

(Generated 2012-12-02 18:23 including fill 3360)
1 meter-long liquid H_2 & D_2 targets can be used (see NA51, . . .)

This gives: $\mathcal{L}_{H_2/D_2} \approx 20 \text{ fb}^{-1} \text{ y}^{-1}$

Recycling the LHC beam loss, one gets a luminosity comparable to the LHC itself!

PHENIX lumi in their decadal plan
- Run14pp 12 pb$^{-1}$ @ $\sqrt{s_{NN}} = 200$ GeV
- Run14dAu 0.15 pb$^{-1}$ @ $\sqrt{s_{NN}} = 200$ GeV
Luminosities with proton beams II

- 1 meter-long liquid H_2 & D_2 targets can be used (see NA51, ...)
- This gives: $\mathcal{L}_{H_2/D_2} \sim 20 \text{ fb}^{-1} \text{ y}^{-1}$
- Recycling the LHC beam loss, one gets a luminosity comparable to the LHC itself!
- PHENIX lumi in their decadal plan
 - Run14pp 12 pb$^{-1}$ @ $\sqrt{s_{NN}} = 200$ GeV
 - Run14dAu 0.15 pb$^{-1}$ @ $\sqrt{s_{NN}} = 200$ GeV
- AFTER vs PHENIX@RHIC: 3 orders of magnitude larger
Luminosities with lead beams

- **Instantaneous Luminosity:**
 \[
 \mathcal{L} = \Phi_{beam} \times N_{target} = N_{beam} \times (\rho \times \ell \times N_A) / A
 \]
 \[
 \Phi_{beam} = 2 \times 10^5 \text{ Pb s}^{-1}, \quad \ell = 1 \text{ cm (target thickness)}
 \]

- **Integrated luminosity**
 \[
 \int dt \mathcal{L} = \mathcal{L} \times 10^6 \text{ s for Pb}
 \]

- **Expected luminosities with** \(2 \times 10^5\) Pb s\(^{-1}\) extracted (1cm-long target)

<table>
<thead>
<tr>
<th>Target</th>
<th>(\rho , (\text{g.cm}^{-3}))</th>
<th>A</th>
<th>(\mathcal{L} , (\text{mb}^{-1}.\text{s}^{-1}) = \int \mathcal{L} , (\text{nb}^{-1}.\text{yr}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sol. H(_2)</td>
<td>0.09</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Liq. H(_2)</td>
<td>0.07</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Liq. D(_2)</td>
<td>0.16</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Be</td>
<td>1.85</td>
<td>9</td>
<td>25</td>
</tr>
<tr>
<td>Cu</td>
<td>8.96</td>
<td>64</td>
<td>17</td>
</tr>
<tr>
<td>W</td>
<td>19.1</td>
<td>185</td>
<td>13</td>
</tr>
<tr>
<td>Pb</td>
<td>11.35</td>
<td>207</td>
<td>7</td>
</tr>
</tbody>
</table>

- **Planned lumi for PHENIX Run15AuAu** 2.8 nb\(^{-1}\) (0.13 nb\(^{-1}\) at 62 GeV)

- **Nominal LHC lumi for PbPb** 0.5 nb\(^{-1}\)
A few figures on the (extracted) proton beam

- Beam loss: $10^9 \, p^+ s^{-1}$
- Extracted intensity: $5 \times 10^8 \, p^+ s^{-1}$ (1/2 the beam loss)
Luminosities

A few figures on the (extracted) proton beam

- Beam loss: $10^9 \, p^+ s^{-1}$
- Extracted intensity: $5 \times 10^8 \, p^+ s^{-1}$ (1/2 the beam loss)

- Number of p^+: 2808 bunches of $1.15 \times 10^{11} \, p^+ = 3.2 \times 10^{14} \, p^+$
A few figures on the (extracted) proton beam

- Beam loss: $10^9 \, p^+ s^{-1}$
- Extracted intensity: $5 \times 10^8 \, p^+ s^{-1}$ (1/2 the beam loss) \cite{Uggerhoj2005}
- Number of p^+: 2808 bunches of $1.15 \times 10^{11} p^+ = 3.2 \times 10^{14} p^+$
- Revolution frequency: Each bunch passes the extraction point at a rate of $3 \times 10^5 \, \text{km.s}^{-1}/27 \, \text{km} \simeq 11 \, \text{kHz}$
A few figures on the (extracted) proton beam

- Beam loss: $10^9 \ p^+ s^{-1}$
- Extracted intensity: $5 \times 10^8 \ p^+ s^{-1}$ (1/2 the beam loss)
- Number of p^+: 2808 bunches of $1.15 \times 10^{11} p^+ = 3.2 \times 10^{14} p^+$
- Revolution frequency: Each bunch passes the extraction point at a rate of $3.10^5 \ km.s^{-1}/27 \ km \approx 11 \ kHz$
- Extracted “mini” bunches:
 - the crystal sees $2808 \times 11000 \ s^{-1} \approx 3.10^7 \ bunches \ s^{-1}$
 - one extracts $5.10^8 / 3.10^7 \approx 15p^+$ from each bunch at each pass
 - Provided that the probability of interaction with the target is below 5%, no pile-up!
A few figures on the (extracted) proton beam

- Beam loss: $10^9 \, p^+ s^{-1}$
- Extracted intensity: $5 \times 10^8 \, p^+ s^{-1}$ (1/2 the beam loss)
- Number of p^+: 2808 bunches of $1.15 \times 10^{11} p^+ = 3.2 \times 10^{14} p^+$
- Revolution frequency: Each bunch passes the extraction point at a rate of $3.10^5 \, \text{km.s}^{-1}/27 \, \text{km} \simeq 11 \, \text{kHz}$
- Extracted “mini” bunches:
 - the crystal sees $2808 \times 11000 \, \text{s}^{-1} \simeq 3.10^7 \, \text{bunches s}^{-1}$
 - one extracts $5.10^8 / 3.10^7 \simeq 15 p^+$ from each bunch at each pass
 - Provided that the probability of interaction with the target is below 5%,
- Extraction over a 10h fill:
 - $5 \times 10^8 p^+ \times 3600 \, \text{s h}^{-1} \times 10 \, \text{h} = 1.8 \times 10^{13} p^+ \, \text{fill}^{-1}$
 - This means $1.8 \times 10^{13} / 3.2 \times 10^{14} \simeq 5.6\%$ of the p^+ in the beam

These protons are lost anyway!
A few figures on the (extracted) proton beam

- Beam loss: \(10^9 \, p^+ s^{-1}\)
- Extracted intensity: \(5 \times 10^8 \, p^+ s^{-1}\) (1/2 the beam loss)
- Number of \(p^+\): 2808 bunches of \(1.15 \times 10^{11} \, p^+ = 3.2 \times 10^{14} \, p^+\)
- Revolution frequency: Each bunch passes the extraction point at a rate of \(3.10^5 \, \text{km.s}^{-1}/27 \, \text{km} \simeq 11 \, \text{kHz}\)
- Extracted “mini” bunches:
 - the crystal sees \(2808 \times 11000 \, \text{s}^{-1} \simeq 3.10^7 \, \text{bunches s}^{-1}\)
 - one extracts \(5.10^8 / 3.10^7 \simeq 15 \, p^+\) from each bunch at each pass
 - Provided that the probability of interaction with the target is below 5%,
- Extraction over a 10h fill:
 - \(5 \times 10^8 \, p^+ \times 3600 \, \text{s.h}^{-1} \times 10 \, \text{h} = 1.8 \times 10^{13} \, p^+ \, \text{fill}^{-1}\)
 - This means \(1.8 \times 10^{13} / 3.2 \times 10^{14} \simeq 5.6\%\) of the \(p^+\) in the beam
 - These protons are lost anyway!
- similar figures for the Pb-beam extraction

J.P. Lansberg (IPNO, Paris-Sud U.)
A Fixed-Target ExpeRiment at the LHC
October 2, 2014 11 / 40
Part II

AFTER: flagship measurements
Key studies: gluons in the proton

- **Gluon distribution** at mid, high and ultra-high x_B in the proton

 Not easily accessible in DIS

 ⇒ very large uncertainties

 Accessible thanks gluon sensitive probes, quarkonia
 see a recent study by D. Diakonov et al., JHEP 1302 (2013) 069

 Isolated photon
 see the recent survey by D. d'Enterria, R. Rojo, Nucl.Phys. B860 (2012) 311

 Jets ($P_T \in [20, 40] \text{ GeV}$)

 Multiple probes needed to check factorisation

 Large-x gluons: important for BSM searches at the LHC
Key studies: gluons in the proton

- **Gluon distribution** at mid, high and ultra-high x_B in the proton
 - Not easily accessible in DIS
 - \Rightarrow very large uncertainties

![Gluon distribution plot](image-url)
Key studies: gluons in the proton

- **Gluon distribution** at mid, high and ultra-high x_B in the proton
 - Not easily accessible in DIS
 - \Rightarrow very large uncertainties

Accessible thanks gluon sensitive probes,

![Gluon distribution plot](attachment:image.png)
Gluon and heavy-quark distributions

Key studies: gluons in the proton

- **Gluon distribution** at mid, high and ultra-high x_B in the proton
 - Not easily accessible in DIS
 - \Rightarrow very large uncertainties

Accessible thanks gluon sensitive probes,

- **quarkonia**

 see a recent study by D. Diakonov *et al.*, JHEP 1302 (2013) 069
Key studies: gluons in the proton

- Gluon distribution at mid, high and ultra-high x_B in the proton
 - Not easily accessible in DIS
 - \Rightarrow very large uncertainties

Accessible thanks gluon sensitive probes,

- quarkonia
 see a recent study by D. Diakonov et al., JHEP 1302 (2013) 069

- Isolated photon
Key studies: gluons in the proton

- **Gluon distribution** at mid, high and ultra-high x_B in the proton
 - Not easily accessible in DIS
 - \Rightarrow very large uncertainties

Accessible thanks glouon sensitive probes,

- **quarkonia**
 - see a recent study by D. Diakonov et al., JHEP 1302 (2013) 069

- **Isolated photon**

- **jets** ($P_T \in [20,40]$ GeV)
Gluon and heavy-quark distributions

Key studies: gluons in the proton

- **Gluon distribution** at mid, high and ultra-high x_B in the proton
 - Not easily accessible in DIS
 - \Rightarrow very large uncertainties

Accessible thanks gluon sensitive probes,

- **quarkonia**
 - see a recent study by D. Diakonov *et al.*, JHEP 1302 (2013) 069

- **Isolated photon**
 - see the recent survey by D. d'Enterria, R. Rojo, Nucl.Phys. B860 (2012) 311

- **jets** ($P_T \in [20, 40]$ GeV)

 Multiple probes needed to **check factorisation**
Key studies: gluons in the proton

- **Gluon distribution** at mid, high and ultra-high x_B in the proton
 - Not easily accessible in DIS
 - ⇒ very large uncertainties

Accessible thanks gluon sensitive probes,

- **quarkonia**
 - see a recent study by D. Diakonov et al., JHEP 1302 (2013) 069

- **Isolated photon**

- **jets** ($P_T \in [20, 40]$ GeV)

Large-x gluons: important for BSM searches at the LHC
Key studies: gluons in the neutron

Gluon PDF for the neutron unknown

Gluon (μ = 100 GeV)
Key studies: gluons in the neutron

Gluon PDF for the neutron unknown

- possible experimental probes
 - heavy quarkonia
 - isolated photons
 - jets

Pioneer measurement by E866 using \(\Upsilon \rightarrow Q^2 \approx 100 \text{ GeV}^2 \)

outcome: \(g_n(x) \approx g_p(x) \)

could be extended with after using \(J/\psi, \ldots, C = +1 \) onia, ...

wider range & lower \(Q^2 \)

target yearly lumi

\(\frac{dN_{J/\psi}}{dy} \) 2.1 m Liq. H

\(\frac{dN_{\Upsilon}}{dy} \) 20 fb

\(\times 10^8 \)

\(\times 10^5 \)

\(\frac{dN_{J/\psi}}{dy} \) 2.1 m Liq. D

\(\frac{dN_{\Upsilon}}{dy} \) 24 fb

\(\times 10^8 \)

\(\times 10^6 \)
Gluon and heavy-quark distributions

Key studies: gluons in the neutron

Gluon PDF for the neutron unknown
possible experimental probes
- heavy quarkonia
- isolated photons
- jets

Pioneer measurement by E866
- using $\Upsilon \rightarrow Q^2 \simeq 100$ GeV2
- outcome: $g_n(x) \simeq g_p(x)$
Key studies: gluons in the neutron

Gluon PDF for the neutron unknown
possible experimental probes
- heavy quarkonia
- isolated photons
- jets

Pioneer measurement by E866
- using $\Upsilon \rightarrow Q^2 \approx 100 \text{ GeV}^2$
- outcome: $g_n(x) \sim g_p(x)$

could be extended with AFTER
- using J/ψ, ..., $C = +1$ onia, ...
- wider x range & lower Q^2
Key studies: gluons in the neutron

Gluon PDF for the neutron unknown

Possible experimental probes:
- heavy quarkonia
- isolated photons
- jets

Pioneer measurement by E866
- using $\Upsilon \rightarrow Q^2 \approx 100 \text{ GeV}^2$
- outcome: $g_n(x) \approx g_p(x)$

Could be extended with AFTER
- using J/ψ, ..., $C = +1$ onia, ...
- wider x range & lower Q^2

<table>
<thead>
<tr>
<th>target</th>
<th>yearly lumi</th>
<th>$\mathcal{B} \frac{dN_{J/\psi}}{dy}$</th>
<th>$\mathcal{B} \frac{dN_{\Upsilon}}{dy}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1m Liq. H$_2$</td>
<td>20 fb$^{-1}$</td>
<td>4.0×10^8</td>
<td>9.0×10^5</td>
</tr>
<tr>
<td>1m Liq. D$_2$</td>
<td>24 fb$^{-1}$</td>
<td>9.6×10^8</td>
<td>1.9×10^6</td>
</tr>
</tbody>
</table>
Key studies: heavy-quark content of the proton

- Heavy-quark distributions (at high x_B)
Key studies: heavy-quark content of the proton

- Heavy-quark distributions (at high x_B)
- Pin down intrinsic charm, ... at last

3 sets from CTEQ6c (Pumplin et al.)
Key studies: heavy-quark content of the proton

- **Heavy-quark** distributions (at high x_B)
 - Pin down **intrinsic charm**, ... at last
 - **Total open charm and beauty** cross section
 (aim: down to $P_T \to 0$)

3 sets from CTEQ6c
(Pumplin *et al.*)

Sealike

BHPS

DGLAP

requires several complementary measurements

good coverage in the target-rapidity region

high luminosity to reach large x_B

J.P. Lansberg (IPNO, Paris-Sud U.)
A Fixed-Target ExpeRiment at the LHC
October 2, 2014
Key studies: heavy-quark content of the proton

- Heavy-quark distributions (at high x_B)
 - Pin down intrinsic charm, ... at last
 - Total open charm and beauty cross section (aim: down to $P_T \rightarrow 0$)

requires

3 sets from CTEQ6c (Pumplin et al.)

DGLAP

BHPS

Sea-like
Key studies: heavy-quark content of the proton

- Heavy-quark distributions (at high x_B)
 - Pin down intrinsic charm, ... at last
 - Total open charm and beauty cross section (aim: down to $P_T \rightarrow 0$) requires
 - several complementary measurements

3 sets from CTEQ6c (Pumplin et al.)
Key studies: heavy-quark content of the proton

- Heavy-quark distributions (at high x_B)
 - Pin down intrinsic charm, ... at last
- Total open charm and beauty cross section (aim: down to $P_T \rightarrow 0$)
 - requires several complementary measurements
 - good coverage in the target-rapidity region

3 sets from CTEQ6c (Pumplin et al.)
Key studies: heavy-quark content of the proton

- Heavy-quark distributions (at high x_B)
 - Pin down intrinsic charm, ... at last
 - Total open charm and beauty cross section (aim: down to $P_T \to 0$)

requires

- several complementary measurements
- good coverage in the target-rapidity region
- high luminosity to reach large x_B

3 sets from CTEQ6c (Pumplin et al.)
Key studies: heavy-quark content of the proton

- **Heavy-quark** distributions (at high x_B)
 - Pin down **intrinsic** charm, ... at last
 - Total open charm and beauty cross section (aim: down to $P_T \to 0$) requires
 - several **complementary** measurements
 - good coverage in the target-rapidity region
 - high luminosity to reach large x_B

![Graph showing gluon and heavy-quark distributions](image)

- **Pin** down intrinsic charm...
Key studies: gluon contribution to the proton spin

- **Gluon Sivers effect**: correlation between the gluon transverse momentum & the proton spin
Key studies: gluon contribution to the proton spin

- **Gluon Sivers effect**: correlation between the gluon transverse momentum & the proton spin
- **Transverse single spin asymmetries** using gluon sensitive probes
Key studies: gluon contribution to the proton spin

- **Gluon Sivers effect**: correlation between the gluon transverse momentum & the proton spin
- Transverse single spin asymmetries using gluon sensitive probes
- Quarkonia (J/ψ, Υ, χ_c, ...)

Key studies: gluon contribution to the proton spin

- **Gluon Sivers effect**: correlation between the gluon transverse momentum & the proton spin
- Transverse single spin asymmetries using gluon sensitive probes
- Quarkonia (J/ψ, Υ, χ_c, ...)

- B & D meson production
Gluon contribution to the proton spin

Key studies: gluon contribution to the proton spin

- **Gluon Sivers effect**: correlation between the gluon transverse momentum & the proton spin
- Transverse single spin asymmetries using gluon sensitive probes
- Quarkonia (J/ψ, Υ, χ_c, ...)
- B & D meson production

γ, γ-jet, $\gamma - \gamma$
Key studies: gluon contribution to the proton spin

- **Gluon Sivers effect**: correlation between the gluon transverse momentum & the proton spin
- Transverse single spin asymmetries using gluon sensitive probes
- Quarkonia (J/ψ, Υ, χ_c, ...)
- B & D meson production
 - γ, γ-jet, $\gamma - \gamma$
 - J.W. Qiu, et al., PRL 107 (2011) 062001
- The target-rapidity region corresponds to high x^\uparrow
 - Where the k_T-spin correlation is the largest
Key studies: gluon contribution to the proton spin

- **Gluon Sivers effect**: correlation between the gluon transverse momentum & the proton spin
- **Transverse single spin asymmetries** using gluon sensitive probes
- **quarkonia** \((J/\psi, \Upsilon, \chi_c, \ldots)\)

- **B & D meson production**

- the target-rapidity region corresponds to high \(x^\uparrow\)

where the \(k_T\)-spin correlation is the largest

- In general, one can carry out an extensive spin-physics program
Access to “Boer-Mulders”-like functions for gluons
Access to “Boer-Mulders”-like functions for gluons

Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER

Daniël Boer*

Theory Group, KVI, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen, The Netherlands

Cristian Pisano†

Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C.P. 170, I-09042 Monserrato (CA), Italy
Access to “Boer-Mulders”-like functions for gluons

- Low P_T C-even quarkonium production is a good probe of the gluon “B-M” functions
Access to “Boer-Mulders”-like functions for gluons

- Low P_T C-even quarkonium production is a good probe of the gluon “B-M” functions

Boer-Mulders effect: correlation between the parton k_T and its spin (in an unpolarized nucleon)
Access to “Boer-Mulders”-like functions for gluons

- **Low** P_T C-even quarkonium production is a good probe of the gluon “B-M” functions

- Affect the **low** P_T spectra:
 \[
 \frac{1}{\sigma} \frac{d\sigma(\eta_Q)}{dq_T^2} \propto 1 - R(q_T^2) \quad \& \quad \frac{1}{\sigma} \frac{d\sigma(\chi_0,Q)}{dq_T^2} \propto 1 + R(q_T^2)
 \]
 \[
 (R \text{ involves } f_1^g(x,k_T,\mu) \text{ and } h_{1}^{\perp g}(x,k_T,\mu))
 \]

Boer-Mulders effect: correlation between the parton k_T and its spin (in an unpolarized nucleon)
Access to “Boer-Mulders”-like functions for gluons

- Low P_T C-even quarkonium production is a good probe of the gluon “B-M” functions

- Affect the low P_T spectra:
 \[\frac{1}{\sigma} \frac{d\sigma(\eta_Q)}{d q_T^2} \propto 1 - R(q_T^2) \quad \text{and} \quad \frac{1}{\sigma} \frac{d\sigma(\chi_0,Q)}{d q_T^2} \propto 1 + R(q_T^2) \]

 (R involves $f_1^g(x, k_T, \mu)$ and $h_{1g}^\perp(x, k_T, \mu)$)

- The boost is of great help to access low P_T P-wave quarkonia
Gluon contribution to the proton spin

Access to “Boer-Mulders”-like functions for gluons

Low P_T C-even quarkonium production is a good probe of the gluon “B-M” functions.

Affect the low P_T spectra:

$$\frac{1}{\sigma} \frac{d\sigma(\eta_Q)}{dq_T^2} \propto 1 - R(q_T^2) \quad \& \quad \frac{1}{\sigma} \frac{d\sigma(\chi_{0,Q})}{dq_T^2} \propto 1 + R(q_T^2)$$

(R involves $f_1^g(x,k_T,\mu)$ and $h_1^\perp g(x,k_T,\mu)$)

The boost is of great help to access low P_T P-wave quarkonia.
Access to “Boer-Mulders”-like functions for gluons II

Wilco J. den Dunnen, Jean-Philippe Lansberg, Cristian Pisano, and Marc Schlegel

1 Institute for Theoretical Physics, Universität Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen, Germany
2 IPNO, Université Paris-Sud, CNRS/IN2P3, F-91406, Orsay, France
3 Nikhef and Department of Physics and Astronomy, VU University Amsterdam, De Boelelaan 1081, NL-1081 HV Amsterdam, The Netherlands

PRL 112, 212001 (2014)

Gluon B-M can also be accessed via back-to-back ψ + γ associated production at the LHC. Also true at AFTER!

Smaller yield (14 TeV \rightarrow 115 GeV) compensated by an access to lower P_T.

$0.01 < Q < 10$ GeV, $|Y| < 0.5$; $|\cos \theta_{CS}| < 0.45$

$d\sigma/dQ/dY/d\cos\theta_{CS} \times Br(Onium \rightarrow \mu \mu)$ (fb/GeV)

$Q_{J/\psi + \gamma}$ GeV

Direct back-to-back $J/\psi + \gamma$ at $\sqrt{s}=115$ GeV

$R = m_{\text{onium}}$, $T = \frac{m_{\text{onium}}}{2}$

$X_{\text{CS}} > 0.02$ GeV

$X_{\text{CS}} > 0.002$ GeV

$-1.5 < Y < -0.5$; $|\cos \theta_{CS}| < 0.45$

$-2.5 < Y < -1.5$; $|\cos \theta_{CS}| < 0.45$

gg: Color Singlet

gg: Color Octet

qq: Color Singlet

qq: Color Octet

At $Y \approx -2$, $x_2 \approx \frac{10}{115} \times e^2 \approx 0.65$. Yet, $g-g > q-\bar{q}$!
Accessing the Transverse Dynamics and Polarization of Gluons inside the Proton at the LHC

Wilco J. den Dunnen, 1,* Jean-Philippe Lansberg, 2 Cristian Pisano, 3,‡ and Marc Schlegel 1,§

1 Institute for Theoretical Physics, Universität Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen, Germany
2 IPNO, Université Paris-Sud, CNRS/IN2P3, F-91406, Orsay, France
3 Nikhef and Department of Physics and Astronomy, VU University Amsterdam, De Boelelaan 1081, NL-1081 HV Amsterdam, The Netherlands

PRL 112, 212001 (2014) PHYSICAL REVIEW LETTERS week ending 30 MAY 2014
Gluon B-M can also be accessed via back-to-back $\psi/\gamma + \gamma$ associated production at the LHC. Also true at AFTER!
Accessing the Transverse Dynamics and Polarization of Gluons inside the Proton at the LHC

Wilco J. den Dunnen, 1,* Jean-Philippe Lansberg, 2,† Cristian Pisano, 3,‡ and Marc Schlegel 1,§

1Institute for Theoretical Physics, Universität Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen, Germany
2IPNO, Université Paris-Sud, CNRS/IN2P3, F-91406, Orsay, France
3Nikhef and Department of Physics and Astronomy, VU University Amsterdam, De Boelelaan 1081, NL-1081 HV Amsterdam, The Netherlands

PRL 112, 212001 (2014) PHYSICAL REVIEW LETTERS week ending 30 MAY 2014

- Gluon B-M can also be accessed via back-to-back $\psi/\gamma + \gamma$ associated production at the LHC. Also true at AFTER!
- Smaller yield (14 TeV \to 115 GeV) compensated by an access to lower P_T
Gluon B-M can also be accessed via back-to-back $J/\psi + \gamma$ associated production at the LHC. Also true at AFTER!

Smaller yield (14 TeV \rightarrow 115 GeV) compensated by an access to lower P_T

At $\mathcal{Y} \approx -2$, $x_2 \approx 10/115 \times e^2 \approx 0.65$. Yet, $g - g > q - \bar{q}$!
Gluon contribution to the proton spin

Access to “Boer-Mulders”-like functions for gluons II

- Gluon B-M can also be accessed via back-to-back $\psi/\gamma + \gamma$ associated production at the LHC. Also true at AFTER!
- Smaller yield ($14 \text{ TeV} \rightarrow 115 \text{ GeV}$) compensated by an access to lower P_T

At $Y \simeq -2$, $x_2 \simeq 10/115 \times e^2 \simeq 0.65$. Yet, $g - g > q - \bar{q}$!
SSA in heavy-flavour studies with AFTER@LHC

To give a direct access to the gluon Sivers effect, pure color-singlet final states are preferred (no color entanglement) η_c production is an option $\left[d\sigma\left(\sqrt{s} = 115\text{GeV}\right)\right]_{dy|y = 0} \gtrsim 1\text{nb}$, although difficult at low P_T see A. Schaefer, J. Zhou, PRD (2013) for a study of SSA

First η_c production production study at LHC ever, released this month LHCb, arXiv:1409.3612 [hep-ex]

As just discussed for the unpolarised case, $\psi^+\gamma$ may be more tractable $\psi^+\gamma$ pair, i.e. $\psi^+\ell\ell$, is another option, although with a small rate
To give a direct access to the **gluon Sivers effect**, pure color-singlet final states are preferred (no color entanglement).
SSA in heavy-flavour studies with AFTER@LHC

- To give a direct access to the **gluon Sivers effect**, pure color-singlet final states are preferred (no color entanglement).

- **η_c production** is an option \(\left[\frac{d\sigma(\sqrt{s}=115\text{GeV})}{dy} \right|_{y=0} \gtrsim 1\text{nb} \), although difficult at low \(P_T \).

- First **η_c production** production study at LHC ever, released this month.

SSA in heavy-flavour studies with AFTER@LHC

- To give a direct access to the **gluon Sivers effect**, pure color-singlet final states are preferred (no color entanglement).
- η_c production is an option $\left[\frac{d\sigma(\sqrt{s}=115\,\text{GeV})}{dy} \big|_{y=0} \gtrsim 1\,\text{nb} \right]$, although difficult at low P_T.

 - First η_c production production study at LHC ever, released this month.

 - As just discussed for the unpolarised case, $\psi + \gamma$ may be more tractable.

J.P. Lansberg (IPNO, Paris-Sud U.)
A Fixed-Target ExpeRiment at the LHC
October 2, 2014
19 / 40
To give a direct access to the **gluon Sivers effect**, pure color-singlet final states are preferred (no color entanglement).

- η_c production is an option $[\frac{d\sigma(\sqrt{s}=115\text{GeV})}{dy}|_{y=0} \gtrsim 1\text{nb}]$, although difficult at low P_T.

- First η_c production production study at LHC ever, released this month.

As just discussed for the unpolarised case, $\psi + \gamma$ may be more tractable.

- $\psi + \text{DY pair, i.e. } \psi + \ell\ell$, is another option, although with a small rate.
AFTER@LHC: A dilepton observatory?

→ Region in x probed by dilepton production as function of $M_{\ell\ell}$

![Graph showing regions probed by dilepton production as a function of $M_{\ell\ell}$ and x.]
AFTER@LHC: A dilepton observatory?

- Region in x probed by dilepton production as function of $M_{\ell\ell}$
 - Above $c\bar{c}$: $x \in [10^{-3}, 1]$
 - Above $b\bar{b}$: $x \in [9 \times 10^{-3}, 1]$

Note: $x_{\text{target}} \equiv x_{\text{2}} > x_{\text{projectile}} \equiv x_{\text{1}}$

"backward" region

- sea-quark asymetries via p and d studies
 - at large(est) x: backward ("easy")
 - at small(est) x: forward (need to stop the (extracted) beam)

To do: to look at the rates to see how competitive this will be

Interesting to check the negligible $\cos^2 \phi$ dependence in pd compared to π induced DY

J.P. Lansberg (IPNO, Paris-Sud U.)
AFTER@LHC: A dilepton observatory?

→ Region in x probed by dilepton production as function of $M_{\ell\ell}$

→ Above $c\bar{c}$: $x \in [10^{-3}, 1]$
→ Above $b\bar{b}$: $x \in [9 \times 10^{-3}, 1]$

Note: $x_{\text{target}} \equiv x_{\text{2}} > x_{\text{projectile}} \equiv x_{\text{1}}$

"backward" region

→ sea-quark asymmetries via p and d studies
 - at large(est) x: backward ("easy")
 - at small(est) x: forward (need to stop the (extracted) beam)

º To do: to look at the rates to see how competitive this will be
º Interesting to check the negligible $\cos^2 \phi$ dependence in p and d compared to π induced DY
AFTER@LHC: A dilepton observatory?

- Region in x probed by dilepton production as function of $M_{\ell\ell}$
- Above $c\bar{c}$: $x \in [10^{-3}, 1]$
- Above $b\bar{b}$: $x \in [9 \times 10^{-3}, 1]$

Note: $x_{target} (\equiv x_2) > x_{projectile} (\equiv x_1)$

“backward” region

Z boson

Υ « family »

J/ψ « family »

ϕ

Note: $x_{target} (\equiv x_2) > x_{projectile} (\equiv x_1)$
AFTER@LHC: A dilepton observatory?

- Region in x probed by dilepton production as function of M_{ll}
 - Above $c\bar{c}$: $x \in [10^{-3}, 1]$
 - Above $b\bar{b}$: $x \in [9 \times 10^{-3}, 1]$

Note: $x_{\text{target}} (\equiv x_2) > x_{\text{projectile}} (\equiv x_1)$
 “backward” region

- sea-quark asymmetries via p and d studies
 - at large(est) x: backward (“easy”)
 - at small(est) x: forward (need to stop the (extracted) beam)
AFTER@LHC: A dilepton observatory?

- Region in x probed by dilepton production as function of M_{ll}
 - Above $c\bar{c}$: $x \in [10^{-3}, 1]$
 - Above $b\bar{b}$: $x \in [9 \times 10^{-3}, 1]$

Note: $x_{\text{target}} (\equiv x_2) > x_{\text{projectile}} (\equiv x_1)$
- “backward” region

- sea-quark asymmetries via p and d studies
 - at large(est) x: backward (“easy”)
 - at small(est) x: forward (need to stop the (extracted) beam)

- To do: to look at the rates to see how competitive this will be
SSA in Drell-Yan studies with AFTER@LHC

Relevant parameters for the future proposed polarized DY experiments.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>particles</th>
<th>energy (GeV)</th>
<th>\sqrt{s} (GeV)</th>
<th>x_p^\uparrow</th>
<th>\mathcal{L} (nb$^{-1}$s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFTER</td>
<td>$p + p^\uparrow$</td>
<td>7000</td>
<td>115</td>
<td>0.01 \div 0.9</td>
<td>1</td>
</tr>
<tr>
<td>COMPASS</td>
<td>$\pi^\pm + p^\uparrow$</td>
<td>160</td>
<td>17.4</td>
<td>0.2 \div 0.3</td>
<td>2</td>
</tr>
<tr>
<td>COMPASS (low mass)</td>
<td>$\pi^\pm + p^\uparrow$</td>
<td>160</td>
<td>17.4</td>
<td>\sim 0.05</td>
<td>2</td>
</tr>
<tr>
<td>RHIC</td>
<td>$p^\uparrow + p$</td>
<td>collider</td>
<td>500</td>
<td>0.05 \div 0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>J–PARC</td>
<td>$p^\uparrow + p$</td>
<td>50</td>
<td>10</td>
<td>0.5 \div 0.9</td>
<td>1000</td>
</tr>
<tr>
<td>PANDA (low mass)</td>
<td>$\bar{p} + p^\uparrow$</td>
<td>15</td>
<td>5.5</td>
<td>0.2 \div 0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>PAX</td>
<td>$p^\uparrow + \bar{p}$</td>
<td>collider</td>
<td>14</td>
<td>0.1 \div 0.9</td>
<td>0.002</td>
</tr>
<tr>
<td>NICA</td>
<td>$p^\uparrow + p$</td>
<td>collider</td>
<td>20</td>
<td>0.1 \div 0.8</td>
<td>0.001</td>
</tr>
<tr>
<td>RHIC Int. Target 1</td>
<td>$p^\uparrow + p$</td>
<td>250</td>
<td>22</td>
<td>0.2 \div 0.5</td>
<td>2</td>
</tr>
<tr>
<td>RHIC Int. Target 2</td>
<td>$p^\uparrow + p$</td>
<td>250</td>
<td>22</td>
<td>0.2 \div 0.5</td>
<td>60</td>
</tr>
<tr>
<td>P1027</td>
<td>$p^\uparrow + p$</td>
<td>120</td>
<td>15</td>
<td>0.35 \div 0.85</td>
<td>400-1000</td>
</tr>
<tr>
<td>P1039</td>
<td>$p + p^\uparrow$</td>
<td>120</td>
<td>15</td>
<td>0.1 \div 0.3</td>
<td>400-1000</td>
</tr>
</tbody>
</table>

For AFTER, the numbers correspond to a 50 cm polarized H target.
$\ell^+ \ell^-$ angular distribution: separation Sivers vs. Boer-Mulders effects.
SSA in Drell-Yan studies with AFTER@LHC

Relevant parameters for the future proposed polarized DY experiments.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>p↑ + p</th>
<th>√s (GeV)</th>
<th>x↑</th>
<th>L</th>
<th>Λ (nb⁻¹ s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFTER</td>
<td>p↑ + p</td>
<td>7000</td>
<td>115</td>
<td>0</td>
<td>0.10÷0.9</td>
</tr>
<tr>
<td>COMPASS</td>
<td>π± + p</td>
<td>160</td>
<td>17.4</td>
<td>0</td>
<td>∼0.05</td>
</tr>
<tr>
<td>COMPASS (low mass)</td>
<td>π± + p</td>
<td>160</td>
<td>17.4</td>
<td>0</td>
<td>∼0.05</td>
</tr>
<tr>
<td>RHIC</td>
<td>p↑ + p collider</td>
<td>500</td>
<td>0.05</td>
<td>0.1</td>
<td>0.05÷0.1</td>
</tr>
<tr>
<td>J–PARC</td>
<td>p↑ + p</td>
<td>50</td>
<td>10</td>
<td>0</td>
<td>0.5÷0.9</td>
</tr>
<tr>
<td>NICA</td>
<td>p↑ + p collider</td>
<td>20</td>
<td>0.1</td>
<td>0.8</td>
<td>0.001</td>
</tr>
<tr>
<td>RHIC Int. Target 1</td>
<td>p↑ + p</td>
<td>250</td>
<td>22</td>
<td>0.2</td>
<td>2</td>
</tr>
<tr>
<td>RHIC Int. Target 2</td>
<td>p↑ + p</td>
<td>250</td>
<td>22</td>
<td>0.2</td>
<td>60</td>
</tr>
<tr>
<td>P1027</td>
<td>p↑ + p</td>
<td>120</td>
<td>15</td>
<td>0</td>
<td>0.35÷0.85</td>
</tr>
<tr>
<td>P1039</td>
<td>p + p</td>
<td>120</td>
<td>15</td>
<td>0</td>
<td>0.1÷0.3</td>
</tr>
</tbody>
</table>

For AFTER, the numbers correspond to a 50 cm polarized H target.

ℓ⁺ ℓ⁻ angular distribution: separation Sivers vs. Boer-Mulders effects

M. Anselmino, ECT*, Feb. 2013 (Courtesy U. d’Alessio)
pA studies: large-x gluon content of the nucleus

Gluons in nuclei
pA studies: large-\(x \) gluon content of the nucleus

- Large-\(x \) gluon nPDF: unknown
- Gluon EMC effect: unknown

![Graph showing EMC gluon comparison](image)
Gluons in nuclei

pA studies: large-x gluon content of the nucleus

- Large-x gluon nPDF: unknown
- Gluon EMC effect: unknown
- Hint from γ data at RHIC

![Graph showing EMC gluon and EPS09 LO fit range]
pA studies: large-\(x\) gluon content of the nucleus

- **Large-\(x\) gluon nPDF: unknown**
- **Gluon EMC effect: unknown**
- **Hint from \(\Upsilon\) data at RHIC**
- **Strongly limited in terms of statistics after 10 years of RHIC** (now 3 points from STAR):
pA studies: large-\(x\) gluon content of the nucleus

- Large-\(x\) gluon nPDF: unknown
- Gluon EMC effect: unknown
- Hint from \(\Upsilon\) data at RHIC
- Strongly limited in terms of statistics after 10 years of RHIC (now 3 points from STAR):
 - **DIS contribution expected for low \(x\) mainly projected contribution of LHeC:**
pA studies: large-x gluon content of the nucleus

- Large-x gluon nPDF: unknown
- Gluon EMC effect: unknown
- Hint from Υ data at RHIC
- Strongly limited in terms of statistics after 10 years of RHIC (now 3 points from STAR):
 - DIS contribution expected for low x mainly projected contribution of LHeC:
 - AFTER allows for extensive studies of gluon sensitive probes in pA
- Unique potential for gluons at $x > 0.1$
Physics with the lead-ion beam

- Design LHC lead-beam energy: **2.76 TeV** per nucleon
Physics with the lead-ion beam

- Design LHC lead-beam energy: 2.76 TeV per nucleon
- In the fixed target mode, PbA collisions at $\sqrt{s_{NN}} \approx 72$ GeV
Physics with the lead-ion beam

- Design LHC lead-beam energy: 2.76 TeV per nucleon
- In the fixed target mode, PbA collisions at $\sqrt{s_{NN}} \simeq 72$ GeV
- Half way between BNL-RHIC (AuAu, CuCu @ 200 GeV) and CERN-SPS (PbPb @ 17.2 GeV)
Physics with the lead-ion beam

- Design LHC lead-beam energy: 2.76 TeV per nucleon
- In the fixed target mode, PbA collisions at $\sqrt{s_{NN}} \approx 72$ GeV
- Half way between BNL-RHIC (AuAu, CuCu @ 200 GeV) and CERN-SPS (PbPb @ 17.2 GeV)
- Example of motivations:

![Graph of measured to expected J/ψ suppression](image)

Fig. 7. Measured J/ψ production yields, normalised to the yields expected assuming that the only source of suppression is the ordinary absorption by the nuclear medium. The data is shown as a function of the energy density reached in the central collision.
Physics with the lead-ion beam

- Design LHC lead-beam energy: **2.76 TeV** per nucleon
- In the fixed target mode, PbA collisions at $\sqrt{s_{NN}} \approx 72$ GeV
- Half way between BNL-RHIC (AuAu, CuCu @ 200 GeV) and CERN-SPS (PbPb @ 17.2 GeV)
- Example of motivations:

![Graph showing evidence for deconfinement of quarks and gluons from the J/ψ suppression pattern measured in Pb-Pb collisions at the CERN-SPS NA50 Collaboration.](image)
Physics with the lead-ion beam

- Design LHC lead-beam energy: 2.76 TeV per nucleon
- In the fixed target mode, PbA collisions at $\sqrt{s_{NN}} \approx 72$ GeV
- Half way between BNL-RHIC (AuAu, CuCu @ 200 GeV) and CERN-SPS (PbPb @ 17.2 GeV)
- Example of motivations: quarkonium sequential melting

![Graph showing measured J/ψ production yields normalized to the yields expected assuming that the only source of suppression is the ordinary absorption by the nuclear medium. The data is shown as a function of the energy density reached in the several collision systems.](image)
Physics with the lead-ion beam

- Design LHC lead-beam energy: 2.76 TeV per nucleon
- In the fixed target mode, PbA collisions at $\sqrt{s_{NN}} \simeq 72$ GeV
- Half way between BNL-RHIC (AuAu, CuCu @ 200 GeV) and CERN-SPS (PbPb @ 17.2 GeV)
- Example of motivations: quarkonium sequential melting
- Enough stat to perform the same study as CMS at low energy
Precision heavy-flavour studies in Heavy-Ion Collisions

- Very precise \textit{pp and pA baselines} (yields, A & y dependences)
Precision heavy-flavour studies in Heavy-Ion Collisions

- Very precise pp and pA baselines (yields, A & y dependences)
- Modern technologies to look for quarkonium excited states
Precision heavy-flavour studies in Heavy-Ion Collisions

- Very precise pp and pA baselines (yields, A & y dependences)
- Modern technologies to look for quarkonium excited states

HERA-B PRD 79 (2009) 012001, and ref. therein
Precision heavy-flavour studies in Heavy-Ion Collisions

- Very precise \(pp \) and \(pA \) baselines (yields, \(A \) & \(y \) dependences)
- Modern technologies to look for quarkonium excited states
- Energy between SPS and RHIC: QGP should be formed w/o \(c\bar{c} \) recombination

HERA-B PRD 79 (2009) 012001, and ref. therein
Precision heavy-flavour studies in Heavy-Ion Collisions

- Very precise \(pp\) and \(pA\) baselines (yields, \(A\) & \(y\) dependences)
- Modern technologies to look for quarkonium excited states
- Energy between SPS and RHIC: QGP should be formed w/o \(c\bar{c}\) recombination
- Open heavy-flavour measurement down to \(P_T = 0\) thanks to the boost.

![Graph showing \(R_{cc}\) vs. \(\sqrt{s}\) (GeV)](HERA-B PRD 79 (2009) 012001, and ref. therein)
Physics with lead-ion beam

Precision heavy-flavour studies in Heavy-Ion Collisions

- Very precise pp and pA baselines (yields, A & y dependences)
- Modern technologies to look for quarkonium excited states
- Energy between SPS and RHIC: QGP should be formed w/o $c\bar{c}$ recombination
- Open heavy-flavour measurement down to $P_T = 0$ thanks to the boost.
- Real hope of being able to look at the quarkonium sequential suppression

HERA-B PRD 79 (2009) 012001, and ref. therein
J.P. Lansberg (IPNO, Paris-Sud U.)

A Fixed-Target Experiment at the LHC

Overall

Fixed Target @ LHC

log (x⁻¹)

Non perturbative regime

x > 1 \rightarrow x \rightarrow 1

EmC effect

Nuclear fermi motion

log (Q^2)

Dilute system

BKF

DGLAP

BK-JIMWLK

saturation

Q^2 = Q^2_s(x)

log (x-1)

log (Q^2)
Non perturbative regime

\[Q^2 = Q^2_s(x) \]

\[\log(x-1) \]

\[\log(Q^2) \]

Fixed Target @ LHC

Dilute system

EMC effect

Nuclear fermi motion

Drell-Yan

DGLAP

BFKL

BK-JIMWLK

saturation

J.P. Lansberg (IPNO, Paris-Sud U.)

A Fixed-Target Experiment at the LHC

October 2, 2014
Fixed Target @ LHC

- Non-perturbative regime
- Drell-Yan
- EMC effect
- Nuclear fermi motion

- Fixed Target @ LHC
- $x > 1 \rightarrow x \\to 1$
- $\log (x^{-1})$
- $\log (Q^2)$
Fixing Target @ LHC

- DGLAP
- BFKL
- Saturation
- Dilute system

Non-perturbative regime

1.\(\log (x^{-1}) \)

- Quarkonia
- High-\(p_T \) jet
- W/Z

\(Q^2 = Q^2_s(x) \)

J.P. Lansberg (IPNO, Paris-Sud U.)

A Fixed-Target ExpeRiment at the LHC

October 2, 2014

Page 25 of 40
Physics opportunities of a fixed-target experiment using LHC beams

S.J. Brodskya, F. Fleur	extsuperscript{e}, C. Hadjidakisc, J.P. Lansbergc,*

a SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
b Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, 91128 Palaiseau, France
c IPNO, Université Paris-Sud, CNRS/IN2P3, 91406 Orsay, France

Contents
1. Introduction...
2. Key numbers and features... 3. Nucleon partonic structure .. 3.1. Drell–Yan..
3.2. Gluons in the proton at large x...
3.2.1. Quarkonia...
3.2.2. Jets ...
3.2.3. Direct/isolated photons...
3.3. Gluons in the deuterium and in the neutron... 3.4. Charm and bottom in the proton... 3.4.1. Open-charm production... 3.4.2. $J/\psi + D$ meson production ..
3.4.3. Heavy-quark plus photon production ...
4. Spin physics...
4.1. Transverse SSA and DY ..
4.2. Quarkonium and heavy-quark transverse SSA ...
4.3. Transverse SSA and photon ..
4.4. Spin asymmetries with a final state polarization ...
5. Nuclear matter ..
5.1. Quark nPDF: Drell–Yan in pA and PbP...
5.2. Gluon nPDF... 5.2.1. Isolated photons and photon–jet correlations...
5.2.2. Precision quarkonium and heavy-flavour studies..
5.3. Color filtering, energy loss, Sudakov suppression and hadron break-up in the nucleus

6. Deconfinement in heavy-ion collisions ..
6.1. Quarkonium studies ..
6.2. Jet quenching ...
6.3. Direct photon ...
6.4. Deconfinement and the target rest frame ..
6.5. Nuclear-matter baseline ...
7. W and Z boson production in pp, pd and pA collisions ..
7.1. First measurements in pA ... 7.2. W/Z production in pp and pd ..
8. Exclusive, semi-exclusive and backward reactions ..
8.1. Ultra-peripheral collisions ..
8.2. Hard diffractive reactions ... 8.3. Heavy-hadron (diffractive) production at $x_F \to -1$
8.4. Very backward physics ...
8.5. Direct hadron production ...
9. Further potentials of a high-energy fixed-target set-up ..
9.1. D and B physics ...
9.2. Secondary beams ...
9.3. Forward studies in relation with cosmic shower ..
Conclusions ..
Acknowledgments ..
References..
Part III

First simulations
First simulation: is the boost an issue?

LHCb has successfully carried out p+Pb and Pb+p analyses at 5 TeV. We have compared the number-of-track distribution as function of η measured in the collider mode by LHCb ($\sqrt{s} = 5$ TeV) vs. that expected in fixed target mode ($\sqrt{s} = 115$ TeV) using a LHCb-like detector (simulation with HIJING).

Despite the boost, the number of tracks in the LHCb acceptance (η forward) is lower in the fixed mode than in the collider mode.

Very encouraging indication that the boost is not an issue, but really an asset.
First simulation: is the boost an issue?

- LHCb has successfully carried out \(p\text{Pb} \) and \(\text{Pb}p \) analyses at 5 TeV.
First simulation: is the boost an issue?

- LHCb has successfully carried out $p\text{Pb}$ and $\text{Pb}p$ analyses at 5 TeV
- We have compared the number-of-track distribution as function of η measured in the collider mode by LHCb ($\sqrt{s} = 5$ TeV) vs. that expected in fixed target mode ($\sqrt{s} = 115$ TeV) using a LHCb-like detector (simulation with HIJING).
First simulation: is the boost an issue?

- LHCb has successfully carried out $p\text{Pb}$ and $\text{Pb}p$ analyses at 5 TeV.

- We have compared the number-of-track distribution as function of η measured in the collider mode by LHCb ($\sqrt{s} = 5$ TeV) vs. that expected in fixed target mode ($\sqrt{s} = 115$ TeV) using a LHCb-like detector (simulation with HIJING).

- Despite the boost, the number of tracks in the LHCb acceptance [forward η] is lower in the fixed mode than in the collider mode.
First simulation: is the boost an issue?

- LHCb has successfully carried out \(p\text{Pb} \) and \(\text{Pb}p \) analyses at 5 TeV.
- We have compared the number-of-track distribution as function of \(\eta \) measured in the collider mode by LHCb (\(\sqrt{s} = 5 \) TeV) vs. that expected in fixed target mode (\(\sqrt{s} = 115 \) TeV) using a LHCb-like detector (simulation with HIJING).

![Graph showing number-of-track distribution](image)

- Despite the boost, the number of tracks in the LHCb acceptance [forward \(\eta \)] is lower in the fixed mode than in the collider mode.
- Very encouraging indication that the boost is not issue, but really an asset.
FAST SIMULATIONS FOR QUARKONIA (pp $\sqrt{s} = 115$ GeV) USING LHCb RECONSTRUCTION PARAMETERS

- Simulations with Pythia 8.185
- LHCb detector is NOT simulated but LHCb reconstruction parameters are introduced in the fast simulation (resolution, analysis cuts, efficiencies…)

Requirements
Momentum resolution: $\Delta p/p = 0.5$
Muon identification efficiency: 98%

Cuts at the single muon level
$2 < \eta_{\mu} < 5$
$p_T^{\mu} > 0.7$ GeV/c

Muon misidentification
If π and K decay before the calorimeters (12m), they are rejected by the tracking
Else a misidentification probability is applied

Performance of the muon identification at LHCb, F. Achilli et al, arXiv:1306.0249
\(J/\Psi \rightarrow \mu^+\mu^- \) IN MB pp @ 115 GEV

- For 1m of H target and few tens of seconds of data taking

B. Trzeciak, July 2014, Orsay

Misidentified pions is the dominant source of background
J/Ψ → µ⁺µ⁻ IN MB pp @ 115 GEV (BINS IN RAPIDITY)

- For 1m of H target and few minutes of data taking

B. Trzeciak, July 2014, Orsay
Accessing the large x glue with quarkonia:

PYTHIA simulation
\[\sigma(y) / \sigma(y=0.4) \]
statistics for one month
5% acceptance considered

Statistical relative uncertainty
Large statistics allow to access very backward region

Gluon uncertainty from MSTWPDF
- only for the gluon content of the target
- assuming
 \[x_g = M_{J/\Psi} / \sqrt{s} \, e^{-y_{CM}} \]

J/Ψ
\[y_{CM} \sim 0 \rightarrow x_g = 0.03 \]
\[y_{CM} \sim -3.6 \rightarrow x_g = 1 \]

⇒ Backward measurements allow to access large x gluon pdf

Y: larger x_g for same y_{CM}
\[y_{CM} \sim 0 \rightarrow x_g = 0.08 \]
\[y_{CM} \sim -2.4 \rightarrow x_g = 1 \]

Assuming that we understand the quarkonium-production mechanisms
Part IV

Special Issue in Advances in High-Energy Physics & Workshop at CERN
Fixed-target experiments (FTE) have brought essential contributions to particle and nuclear physics. They have led to particle discoveries, e.g., and evidence for the novel dynamics of quarks and gluons in heavy-ion collisions. In accessing high x_t and in offering options for (un-)polarised proton and nuclear targets, they have also led to the observation of surprising QCD phenomena. They offer specific advantages compared to collider experiments: access to high x_t, high luminosities, target versatility, and polarisation.

The LHC 7 TeV protons on targets release a c.m.s. energy close to 115 GeV (72 GeV with Pb), in a range never explored so far, significantly higher than that at SPS and not far from RHIC. The production of quarkonia, D, heavy flavours, jets, and γ in pA collisions can be studied with statistics previously unheard of and in the backward region, $x_t < 0$, which is uncharted. High precision QCD measurements can also obviously be carried out in pp and pd collisions with 3_2H_2 and 2_2D_2 targets. With the 50 TeV protons of the future circular collider (FCC), the c.m.s. energy could reach 300 GeV for original studies of W and Z boson, and perhaps H^0, production in pp and pA collisions.

With the LHC Pb beam, one can study the quark-gluon plasma (QGP) from the viewpoint of the nucleus rest frame after its formation. Thanks to modern technologies, studies of, for instance, direct γ and quarkonium P-waves production in heavy-ion collisions can be envisioned.

Polarising the target allows one to study single-spin correlations including the Sivers effect, hence, the correlation between the parton k_t and the nucleon spin.

We intend to publish a special issue on the physics at such a FTE using the LHC or FCC beams. The editors welcome original research articles and review articles from both theorists and experimentalists.

Potential topics include, but are not limited to:
- Heavy-quark and gluon content at large x
- TMDs and single-spin asymmetries
- Heavy-flavour studies in pA and AA collisions at FTEs
- W, Z, and H^0 production near threshold
- Target polarisation
- Secondary beams
- Simulation tools for high-energy physics
- Beam collimation and extraction with bent crystals
- Machine feasibility and radiological aspects
- Connection between UHECR studies and FTEs

Lead Guest Editor
Jean-Philippe Lansberg, Université Paris-Sud, Orsay, France
lansberg@in2p3.fr

Guest Editors
Gianluca Cavoto, Istituto Nazionale Di Fisica Nucleare, Roma, Italy
gianluca.cavoto@roma1.infn.it

Cynthia Hadjidakis, Université Paris-Sud, Orsay, France
cynthia@ipno.in2p3.fr

Jibo He, CERN, Geneva, Switzerland
jibo.he@cern.ch

Cédric Lorcé, Université de Liège, Liège, Belgium
c.lorce@ulg.ac.be

Barbara Trzeciak, Czech Technical University, Prague, Czech Republic
trzeciak@fjfi.cvut.cz

Manuscript Due
Friday, 20 March 2015

First Round of Reviews
Friday, 12 June 2015

Publication Date
Friday, 7 August 2015

Impact Factor: 2.7 (like Nucl. Phys. A, JPhysG), Open Access
Fixed-target experiments (FTE) have brought essential contributions to nuclear physics. They have led to particle discoveries (Ω, J/ψ, γ...) and for the novel dynamics of quarks and gluons in heavy-ion collisions. In high x_t and in offering options for (un-)polarised proton and nuclear target, they have also led to the observation of surprising QCD phenomena. They offer advantages compared to collider experiments: access to high x_t, high luminosity target versatility, and polarisation.

The LHC 7 TeV protons on targets release a c.m.s. energy close to 115 GeV with Pb, in a range never explored so far, significantly higher than that at RHIC. The production of quarkonia, DY, heavy flavours, jets, pA collisions can be studied with statistics previously unheard of and in the l region, $x_t < 0$, which is uncharted. High precision QCD measurements obviously be carried out in pp and pd collisions with H_2 and D_2 targets. 50 TeV protons of the future circular collider (FCC), the c.m.s. energy to 400 GeV for original studies of W and Z boson, and perhaps H^0, product and pA collisions.

With the LHC Pb beam, one can study the quark-gluon plasma (QGP) from the viewpoint of the nucleus rest frame after its formation. Thanks to modern technologies, studies of, for instance, direct $γ$ and quarkonium P-waves production in heavy-ion collisions can be envisioned.

Polarising the target allows one to study single-spin correlations including the Sivers effect, hence, the correlation between the parton k_T and the nucleon spin.

We intend to publish a special issue on the physics at such a FTE using the LHC or FCC beams. The editors welcome original research articles and review articles from both theorists and experimentalists.

Potential topics include, but are not limited to:

- Heavy-quark and gluon content at large x
- TMDs and single-spin asymmetries
- Heavy-flavour studies in pA and AA collisions at FTEs
- W, Z, and H^0 production near threshold
- Target polarisation
- Secondary beams
- Simulation tools for high-energy physics
- Beam collimation and extraction with bent crystals
- Machine feasibility and radiological aspects
- Connection between UHECR studies and FTEs

Cédric Lorce, Université de Liège, Liège, Belgium
c.lorce@ulg.ac.be
Barbara Trzeciak, Czech Technical University, Prague, Czech Republic
trzeciak@fiit.cvut.cz
Manuscript Due
Friday, 20 March 2015
First Round of Reviews
Friday, 12 June 2015
Publication Date
Friday, 7 August 2015

Impact Factor: 2.7 (like Nucl. Phys. A, JPhysG), Open Access
Fixed-target experiments (FTEs) have brought essential contributions to the field of nuclear physics. They have led to particle discoveries ($\Gamma, f\pi, \gamma, ...$) and for the novel dynamics of quarks and gluons in high-energy collisions. In high x_T and in offering options for (un-)polarised proton and nuclear targets, they have also led to the observation of surprising QCD phenomena. They offer advantages compared to collider experiments: access to high x_T, highlum target versatility, and polarisation.

The LHC 7 TeV protons on targets release a c.m.s. energy close to 115 GeV with Pb, in a range never explored so far, significantly higher than that at RHIC. The production of quarkonia, DY, heavy flavours, jets, pA collisions can be studied with statistics previously unheard of, and in the t region, $x_T < 0$, which is uncharted. High precision QCD measurements obviously be carried out in pp and pd collisions with H_2 and D_2 targets. 50 TeV protons of the future circular collider (FCC), the c.m.s. energy to 300 GeV for original studies of W and Z boson, and perhaps H0, product and pA collisions.

With the LHC Pb beam, one can study the quark-gluon plasma (QGP) from the viewpoint of the nucleus rest frame after its formation. Thanks to modern technologies, studies of, for instance, direct γ and quarkonium P-waves production in heavy-ion collisions can be envisioned.

Polarising the target allows one to study single-spin correlations including the Sivers effect, hence, the correlation between the parton k_T and the nucleon spin.

We intend to publish a special issue on the physics at such a FTE using the LHC or FCC beams. The editors welcome original research articles and review articles from both theorists and experimentalists.

Potential topics include, but are not limited to:

- Heavy-quark and gluon content at large x
- TMDs and single-spin asymmetries
- Heavy-flavour studies in pA and AA collisions at FTEs
- W, Z, and H0 production near threshold
- Target polarisation
- Secondary beams
- Simulation tools for high-energy physics
- Beam collimation and extraction with bent crystals
- Machine feasibility and radiological aspects
- Connection between UHECR studies and FTEs

Cédric Lorcé, Université de Liège, Liège, Belgium
corce@ulg.ac.be

Barbara Trzciak, Czech Technical University, Prague, Czech Republic
trzciakb@ffti.cvut.cz

Manuscript Due
Friday, 20 March 2015

First Round of Reviews
Friday, 12 June 2015

Publication Date
Friday, 7 August 2015

Impact Factor: 2.7 (like Nucl. Phys. A, JPhysG), Open Access
Workshop at CERN on November 2014

- 5 days, from Monday Nov. 17 until Friday Nov. 21, 2014
Workshop at CERN on November 2014

- 5 days, from Monday Nov. 17 until Friday Nov. 21, 2014
- Half day introductory session on Monday morning

- Preparation of the Expression of Interest to be submitted to the LHCC (aim: first semester of 2015)
- Special issue: Connexions & synergies with other projects at LHC or not (like E906,...)

Website: http://indico.cern.ch/e/AFTER-Week-1114
5 days, from Monday Nov. 17 until Friday Nov. 21, 2014
Half day introductory session on Monday morning
7 half-day sessions for 2 working groups of 10-20 people
 ((a) Physics & (b) Detector-Extraction)

Topics to be discussed
- Preparation of the Expression of Interest to be submitted to the LHCC
 (aim: first semester of 2015)
- Special issue
 Connexions & synergies with other projects at LHC or not (like E906,...)

Website:
http://indico.cern.ch/e/AFTER-Week-1114
Workshop at CERN on November 2014

- 5 days, from Monday Nov. 17 until Friday Nov. 21, 2014
- Half day introductory session on Monday morning
- 7 half-day sessions for 2 working groups of 10-20 people
 ((a) Physics & (b) Detector-Extraction)
- Topics to be discussed

Preparation of the Expression of Interest to be submitted to the LHCC
(aim: first semester of 2015)

Special issue
Connexions & synergies with other projects at LHC or not (like E906, ...)

Website: http://indico.cern.ch/e/AFTER-Week-1114
Workshop at CERN on November 2014

- 5 days, from Monday Nov. 17 until Friday Nov. 21, 2014
- Half day introductory session on Monday morning
- 7 half-day sessions for 2 working groups of 10-20 people
 ((a) Physics & (b) Detector-Extraction)

Topics to be discussed
- Preparation of the Expression of Interest to be submitted to the LHCC
 (aim: first semester of 2015)
Workshop at CERN on November 2014

- 5 days, from Monday Nov. 17 until Friday Nov. 21, 2014
- Half day introductory session on Monday morning
- 7 half-day sessions for 2 working groups of 10-20 people
 ((a) Physics & (b) Detector-Extraction)

Topics to be discussed

- Preparation of the Expression of Interest to be submitted to the LHCC
 (aim: first semester of 2015)
- Special issue
Workshop at CERN on November 2014

- 5 days, from Monday Nov. 17 until Friday Nov. 21, 2014
- Half day introductory session on Monday morning
- 7 half-day sessions for 2 working groups of 10-20 people
 - ((a) Physics & (b) Detector-Extraction)

Topics to be discussed

- Preparation of the Expression of Interest to be submitted to the LHCC
 - (aim: first semester of 2015)
- Special issue
- Connexions & synergies with other projects at LHC or not (like E906,...)
5 days, from Monday Nov. 17 until Friday Nov. 21, 2014

Half day introductory session on Monday morning

7 half-day sessions for 2 working groups of 10-20 people
(a) Physics & (b) Detector-Extraction

Topics to be discussed
- Preparation of the Expression of Interest to be submitted to the LHCC (aim: first semester of 2015)
- Special issue
- Connexions & synergies with other projects at LHC or not (like E906,...)

Website: http://indico.cern.ch/e/AFTER-Week-1114
Part V

Conclusion and outlooks
Both p and Pb LHC beams can be extracted without disturbing the other experiments.
Conclusion

- Both p and Pb LHC beams can be extracted without disturbing the other experiments.
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec.
Conclusion

- Both p and Pb LHC beams can be extracted without disturbing the other experiments.
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec.
- This allows for high luminosity pp, pA and PbA collisions at $\sqrt{s} = 115$ GeV and $\sqrt{s_{NN}} = 72$ GeV.
Conclusion

- Both p and Pb LHC beams can be extracted without disturbing the other experiments.
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec.
- This allows for high luminosity pp, pA and PbA collisions at $\sqrt{s} = 115$ GeV and $\sqrt{s_{NN}} = 72$ GeV.
- Large potential for spin physics.
Conclusion

- Both p and Pb LHC beams can be extracted without disturbing the other experiments.
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec.
- This allows for high luminosity pp, pA and PbA collisions at $\sqrt{s} = 115$ GeV and $\sqrt{s_{NN}} = 72$ GeV.
- Large potential for spin physics:
 - in unpolarised pp collisions \rightarrow access to gluon “B-M” fct.
Conclusion

- Both p and Pb LHC beams can be extracted without disturbing the other experiments.
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec.
- This allows for high luminosity pp, pA and PbA collisions at $\sqrt{s} = 115$ GeV and $\sqrt{s_{NN}} = 72$ GeV.
- Large potential for spin physics:
 - In unpolarised pp collisions \rightarrow access to gluon “B-M” fct.
 - SSA for a number of HF systems \rightarrow access to gluon Sivers fct.
Both p and Pb LHC beams can be extracted without disturbing the other experiments.

Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec.

This allows for high luminosity pp, pA and PbA collisions at $\sqrt{s} = 115$ GeV and $\sqrt{s_{NN}} = 72$ GeV.

Large potential for spin physics:
- in unpolarised pp collisions \rightarrow access to gluon “B-M” fct
- SSA for a number of HF systems \rightarrow access to gluon Sivers fct
- SSA for DY also possible

A wealth of possible measurements:
- DY, Open b/c, jet correlation, UPC... (not mentioning secondary beams)
Both p and Pb LHC beams can be extracted without disturbing the other experiments.

Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec.

This allows for high luminosity pp, pA and PbA collisions at $\sqrt{s} = 115$ GeV and $\sqrt{s_{NN}} = 72$ GeV.

Large potential for spin physics:
- in unpolarised pp collisions \rightarrow access to gluon “B-M” fct
- SSA for a number of HF systems \rightarrow access to gluon Sivers fct
- SSA for DY also possible

A wealth of possible measurements:
- DY, Open b/c, jet correlation, UPC... (not mentioning secondary beams)

LHC long shutdown (LS2 ? in 2018) needed to install the extraction system.
Conclusion

- Both p and Pb LHC beams can be extracted without disturbing the other experiments.
- Extracting a few per cent of the beam $\rightarrow 5 \times 10^8$ protons per sec.
- This allows for high luminosity pp, pA and PbA collisions at $\sqrt{s} = 115$ GeV and $\sqrt{s_{NN}} = 72$ GeV.
- Large potential for spin physics:
 - in unpolarised pp collisions \rightarrow access to gluon “B-M” fct.
 - SSA for a number of HF systems \rightarrow access to gluon Sivers fct.
 - SSA for DY also possible.
- A wealth of possible measurements:
 - DY, Open b/c, jet correlation, UPC... (not mentioning secondary beams)
- LHC long shutdown (LS2 ? in 2018) needed to install the extraction system.
- Very good complementarity with electron-ion programs (low x vs. large x).
Outlooks

- First physics paper *Physics Reports 522 (2013) 239*
Outlooks

- First physics paper Physics Reports 522 (2013) 239
- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013 slides at http://indico.in2p3.fr/event/AFTER@ECTstar

We are looking for more partners to:
- do first simulations (we are starting fast simulations)
- think about possible designs
- think about the optimal detector technologies
- enlarge the physics case (cosmic rays, flavour physics, ...)

Outlooks

- First physics paper *Physics Reports 522* (2013) 239
- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013 slides at http://indico.in2p3.fr/event/AFTER@ECTstar
- Workshop in *Les Houches* on 12-17 January 2014 http://indico.in2p3.fr/event/AFTER@LesHouches
 and 3-day workshop in Orsay with LUA9 on November 18-20, 2013 http://indico.in2p3.fr/event/LUA9-AFTER-1113

We are looking for more partners to
- do first simulations (we are starting fast simulations)
- think about possible designs
- think about the optimal detector technologies
- enlarge the physics case (cosmic rays, flavour physics, ...)

Outlooks

- First physics paper *Physics Reports* 522 (2013) 239
- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013 slides at http://indico.in2p3.fr/event/AFTER@ECTstar
- Workshop in *Les Houches* on 12-17 January 2014 http://indico.in2p3.fr/event/AFTER@LesHouches and 3-day workshop in Orsay with LUA9 on November 18-20, 2013 http://indico.in2p3.fr/event/LUA9-AFTER-1113
- We are looking for more partners to
Outlooks

- First physics paper *Physics Reports* 522 (2013) 239
- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013 slides at http://indico.in2p3.fr/event/AFTER@ECTstar
- Workshop in Les Houches on 12-17 January 2014 http://indico.in2p3.fr/event/AFTER@LesHouches
 and 3-day workshop in Orsay with LUA9 on November 18-20, 2013 http://indico.in2p3.fr/event/LUA9-AFTER-1113
- We are looking for more partners to
 - do first simulations (we are starting fast simulations)
Outlooks

- First physics paper *Physics Reports* 522 (2013) 239
- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013 slides at http://indico.in2p3.fr/event/AFTER@ECTstar
- Workshop in *Les Houches* on 12-17 January 2014 http://indico.in2p3.fr/event/AFTER@LesHouches
 and 3-day workshop in Orsay with LUA9 on November 18-20, 2013 http://indico.in2p3.fr/event/LUA9-AFTER-1113
- We are looking for more partners to
 - do first simulations (we are starting fast simulations)
 - think about possible designs
Outlooks

- First physics paper *Physics Reports* 522 (2013) 239
- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013 slides at http://indico.in2p3.fr/event/AFTER@ECTstar
- Workshop in *Les Houches* on 12-17 January 2014 http://indico.in2p3.fr/event/AFTER@LesHouches and 3-day workshop in Orsay with LUA9 on November 18-20, 2013 http://indico.in2p3.fr/event/LUA9-AFTER-1113

We are looking for more partners to

- do first simulations (we are starting fast simulations)
- think about possible designs
- think about the optimal detector technologies
- enlarge the physics case
 (cosmic rays, flavour physics, ...)

J.P. Lansberg (IPNO, Paris-Sud U.)

A Fixed-Target ExpeRiment at the LHC

October 2, 2014
Outlook

- First physics paper *Physics Reports* 522 (2013) 239
- A 10-day exploratory workshop at ECT* Trento, February 4-13, 2013 slides at http://indico.in2p3.fr/event/AFTER@ECTstar
- Workshop in Les Houches on 12-17 January 2014 http://indico.in2p3.fr/event/AFTER@LesHouches and 3-day workshop in Orsay with LUA9 on November 18-20, 2013 http://indico.in2p3.fr/event/LUA9-AFTER-1113
- We are looking for more partners to
 - do first simulations (we are starting fast simulations)
 - think about possible designs
 - think about the optimal detector technologies
 - enlarge the physics case
 - (cosmic rays, flavour physics, ...)
Example: \(E_P = 50 \text{ TeV} \rightarrow \sqrt{s} = \sqrt{2m_N E_P} \simeq 300 \text{ GeV} \)

One example: extensive studies of \(W \) and \(Z \) near threshold

<table>
<thead>
<tr>
<th>Beam Energy (TeV)</th>
<th>SppC-1</th>
<th>SppC-2</th>
<th>HE LHC</th>
<th>FCC-hh</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>45</td>
<td>16.5</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>193.7</td>
<td>290.6</td>
<td>175.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td>6000</td>
<td>1404 (50 ns spacing)</td>
<td>10600/53000 (25 and 5 ns spacing)</td>
<td></td>
</tr>
<tr>
<td>(N_p/\text{bunch (10}^{11})</td>
<td>1.7\cdot 10^{-3}</td>
<td>0.98\cdot 10^{-3}</td>
<td>1.3</td>
<td>1/0.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proton flux</th>
<th>SppC-1</th>
<th>SppC-2</th>
<th>HE LHC</th>
<th>FCC-hh</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{ } \mu b^{-1} s^{-1})</td>
<td>7.1 \cdot 10^5</td>
<td>8.1 \cdot 10^5</td>
<td>2.5 \cdot 10^8</td>
<td>1.5 \cdot 10^9</td>
</tr>
<tr>
<td>(\int \mathcal{L}(pb^{-1} yr^{-1}))</td>
<td>0.028/0.088/0.044</td>
<td>0.032/0.10/0.05</td>
<td>10/31/15</td>
<td>30/93/45</td>
</tr>
</tbody>
</table>

The proton flux is calculated by assuming that 5% of the beam is used within a 10 hour period. The luminosities are calculated for the case of targets that are 1 cm thick. The three values displayed represent luminosities for three different targets: liquid Helium, Beryllium and Tungsten.
Further readings

Hadronic production of \(\Xi_{cc} \) at a fixed-target experiment at the LHC

Quarkonium Physics at a Fixed-Target Experiment using the LHC Beams.

Azimuthal asymmetries in lepton-pair production at a fixed-target experiment using the LHC beams (AFTER)

Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER

Ultra-relativistic heavy-ion physics with AFTER@LHC

Spin physics at A Fixed-Target ExpeRiment at the LHC (AFTER@LHC)

Physics Opportunities of a Fixed-Target Experiment using the LHC Beams
Part VI

Backup slides
The beam extraction: news

Goal: assess the possibility to use bent crystals as primary collimators in hadronic accelerators and colliders

Prototype crystal collimation system at SPS:
- Local beam loss reduction (5÷20x reduction for proton beam)
- Beam loss map shows average loss reduction in the entire SPS ring
- Halo extraction efficiency: 70÷80% for protons (50÷70% for Pb)
The beam extraction: news

Goal: assess the possibility to use bent crystals as primary collimators in hadronic accelerators and colliders.

Prototype crystal collimation system at SPS:
- **local beam loss reduction** (5-20x reduction for proton beam)
- beam loss map show average loss reduction in the entire SPS ring
- **halo extraction efficiency** 70-80% for protons (50-70% for Pb)

UA9 installation in the SPS

LUA9 future installation in LHC

S. Montesano, Physics at AFTER using LHC beams, ECT Trento, Feb. 2013*
The beam extraction: news

Goal: assess the possibility to use bent crystals as primary collimators in hadronic accelerators and colliders

Prototype crystal collimation system at SPS:
- local beam loss reduction (5-20x reduction for proton beam)
- beam loss map show average loss reduction in the entire SPS ring
- halo extraction efficiency 70±80% for protons (50±70% for Pb)

Towards an installation in the LHC: propose and install during LS1 a min. number of devices
- 2 crystals

Long term plan is ambitious: propose a collimation system based on bent crystals for the upgrade of the current LHC collimation system
Crystal resistance to irradiation

- **IHEP U-70** (Biryukov et al, NIMB 234, 23-30):
 - 70 GeV protons, 50 ms spills of 10^{14} protons every 9.6 s, several minutes irradiation
 - equivalent to 2 nominal LHC bunches for 500 turns every 10 s
 - 5 mm silicon crystal, channeling efficiency unchanged

- **SPS North Area - NA48** (Biino et al, CERN-SL-96-30-EA):
 - 450 GeV protons, 2.4 s spill of 5×10^{12} protons every 14.4 s, one year irradiation, 2.4×10^{20} protons/cm2 in total,
 - equivalent to several year of operation for a primary collimator in LHC
 - $10 \times 50 \times 0.9$ mm3 silicon crystal, 0.8×0.3 mm2 area irradiated, channeling efficiency reduced by 30%.

- **HRMT16-UA9CRY** (HiRadMat facility, November 2012):
 - 440 GeV protons, up to 288 bunches in 7.2 μs, 1.1×10^{11} protons per bunch (3×10^{13} protons in total)
 - energy deposition comparable to an asynchronous beam dump in LHC
 - 3 mm long silicon crystal, no damage to the crystal after accurate visual inspection, more tests planned to assess possible crystal lattice damage
 - accurate FLUKA simulation of energy deposition and residual dose
AFTER, among other things, a quarkonium observatory in *pp*

Interpolating the world data set:

<table>
<thead>
<tr>
<th>Target</th>
<th>$\int L$ (fb$^{-1}$.yr$^{-1}$)</th>
<th>$N(J/\Psi)$ yr$^{-1}$</th>
<th>$N(\Upsilon)$ yr$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m Liq. H$_2$</td>
<td>20</td>
<td>4.0×10^8</td>
<td>8.0×10^5</td>
</tr>
<tr>
<td>1 m Liq. D$_2$</td>
<td>24</td>
<td>9.6×10^8</td>
<td>1.9×10^6</td>
</tr>
<tr>
<td>LHC pp 14 Tev (low pT)</td>
<td>0.05 (ALICE) 2 LHCb</td>
<td>3.6×10^7</td>
<td>1.8×10^5</td>
</tr>
<tr>
<td>RHIC pp 200GeV</td>
<td>1.2×10^{-2}</td>
<td>4.8×10^5</td>
<td>1.2×10^3</td>
</tr>
</tbody>
</table>

1000 times higher than at RHIC; comparable to ALICE/LHCb at the LHC

Numbers are for only one unit of rapidity about 0

Unique access in the backward region

Probe of the (very) large x in the target
AFTER, among other things, a quarkonium observatory in *pp*

Interpolating the world data set:

<table>
<thead>
<tr>
<th>Target</th>
<th>$\int \mathcal{L} \ (\text{fb}^{-1}.\text{yr}^{-1})$</th>
<th>$N(J/\Psi) \ \text{yr}^{-1}$</th>
<th>$N(\Upsilon) \ \text{yr}^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m Liq. H_2</td>
<td>20</td>
<td>4.0×10^8</td>
<td>8.0×10^5</td>
</tr>
<tr>
<td>1 m Liq. D_2</td>
<td>24</td>
<td>9.6×10^8</td>
<td>1.9×10^6</td>
</tr>
<tr>
<td>LHC pp 14 TeV (low pT)</td>
<td>0.05 (ALICE) 2 LHCb</td>
<td>3.6×10^7</td>
<td>1.8×10^5</td>
</tr>
<tr>
<td>RHIC pp 200GeV</td>
<td>1.2×10^{-2}</td>
<td>4.8×10^5</td>
<td>1.2×10^3</td>
</tr>
</tbody>
</table>

1000 times higher than at RHIC; comparable to ALICE/LHCb at the LHC
AFTER, among other things, a quarkonium observatory in pp

- Interpolating the world data set:

<table>
<thead>
<tr>
<th>Target</th>
<th>$\int \mathcal{L} \ (fb^{-1}.yr^{-1})$</th>
<th>$N(J/\Psi) \ yr^{-1}$</th>
<th>$N(\Upsilon) \ yr^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m Liq. H_2</td>
<td>20</td>
<td>4.0×10^8</td>
<td>8.0×10^5</td>
</tr>
<tr>
<td>1 m Liq. D_2</td>
<td>24</td>
<td>9.6×10^8</td>
<td>1.9×10^6</td>
</tr>
<tr>
<td>LHC pp 14 Tev (low pT)</td>
<td>0.05 (ALICE)</td>
<td>3.6×10^7</td>
<td>1.8×10^5</td>
</tr>
<tr>
<td></td>
<td>2 LHCb</td>
<td>1.4×10^9</td>
<td>7.2×10^6</td>
</tr>
<tr>
<td>RHIC pp 200 GeV</td>
<td>1.2×10^{-2}</td>
<td>4.8×10^5</td>
<td>1.2×10^3</td>
</tr>
</tbody>
</table>

- 1000 times higher than at RHIC; comparable to ALICE/LHCb at the LHC
- Numbers are for only one unit of rapidity about 0
AFTER, among other things, a quarkonium observatory in pp

Interpolating the world data set:

<table>
<thead>
<tr>
<th>Target</th>
<th>$\int \mathcal{L} , (\text{fb}^{-1}\cdot\text{yr}^{-1})$</th>
<th>$N(J/\Psi) , \text{yr}^{-1}$</th>
<th>$N(\Upsilon) , \text{yr}^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m Liq. H_2</td>
<td>20</td>
<td>4.0×10^8</td>
<td>8.0×10^5</td>
</tr>
<tr>
<td>1 m Liq. D_2</td>
<td>24</td>
<td>9.6×10^8</td>
<td>1.9×10^6</td>
</tr>
<tr>
<td>LHC pp 14 TeV</td>
<td>0.05 (ALICE)</td>
<td>3.6×10^7</td>
<td>1.8×10^5</td>
</tr>
<tr>
<td></td>
<td>2 LHCb</td>
<td>1.4×10^9</td>
<td>7.2×10^6</td>
</tr>
<tr>
<td>RHIC pp 200GeV</td>
<td>1.2×10^{-2}</td>
<td>4.8×10^5</td>
<td>1.2×10^3</td>
</tr>
</tbody>
</table>

- 1000 times higher than at RHIC; comparable to ALICE/LHCb at the LHC
- Numbers are for only one unit of rapidity about 0
- Unique access in the backward region
AFTER, among other things, a quarkonium observatory in pp

- Interpolating the world data set:

<table>
<thead>
<tr>
<th>Target</th>
<th>$\int L , (fb^{-1}.yr^{-1})$</th>
<th>$N(J/\Psi) , yr^{-1}$</th>
<th>$N(\Upsilon) , yr^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m Liq. H_2</td>
<td>20</td>
<td>4.0×10^8</td>
<td>8.0×10^5</td>
</tr>
<tr>
<td>1 m Liq. D_2</td>
<td>24</td>
<td>9.6×10^8</td>
<td>1.9×10^6</td>
</tr>
<tr>
<td>LHC pp 14 TeV (low pT)</td>
<td>0.05 (ALICE)</td>
<td>3.6×10^7</td>
<td>1.8×10^5</td>
</tr>
<tr>
<td></td>
<td>2 LHCb</td>
<td>1.4×10^9</td>
<td>7.2×10^6</td>
</tr>
<tr>
<td>RHIC pp 200GeV</td>
<td>1.2×10^{-2}</td>
<td>4.8×10^5</td>
<td>1.2×10^3</td>
</tr>
</tbody>
</table>

- 1000 times higher than at RHIC; comparable to ALICE/LHCb at the LHC
- Numbers are for only one unit of rapidity about 0
- Unique access in the backward region
- Probe of the (very) large x in the target
Need for a quarkonium observatory

- Many **hopes** were put in **quarkonium studies** to extract **gluon PDF**

- **Production puzzle** → quarkonium not used anymore in global fits

With systematic studies, one would restore its status as gluon probe

J.P. Lansberg (IPNO, Paris-Sud U.)
Need for a quarkonium observatory

- Many hopes were put in quarkonium studies to extract gluon PDF in photo/lepto production (DIS)
- but also pp collisions in gg-fusion process
- mainly because of the presence of a natural “hard” scale: m_Q
- and the good detectability of a dimuon pair
Backup slides

Need for a quarkonium observatory

* Many hopes were put in quarkonium studies to extract gluon PDF in photo/lepto production (DIS)
* but also pp collisions in gg-fusion process
* mainly because of the presence of a natural “hard” scale: m_Q
* and the good detectability of a dimuon pair

Structure-function analysis and ψ, jet, W, and Z production:
* Determining the gluon distribution

A. D. Martin
Department of Physics, University of Durham, Durham, England

R. G. Roberts
Rutherford Appleton Laboratory, Didcot, Oxon, England

W. J. Stirling
Department of Physics, University of Durham, Durham, England
(Received 27 July 1987)

We perform a next-to-leading-order structure-function analysis of deep-inelastic μN and νN scattering data and find acceptable fits for a range of input gluon distributions. We show three equally acceptable sets of parton distributions which correspond to gluon distributions which are (1) “soft,” (2) “hard,” and (3) which behave as $xG(x) \approx 1/\sqrt{x}$ at small x. J/ψ and prompt photon hadroproduction data are used to discriminate between the three sets. Set 1, with the “soft”-gluon distribution, is favored. W, Z, and jet production data from the CERN collider are well described but do not distinguish between the sets of structure functions. The precision of the predictions for σ_W and σ_Z allow the collider measurements to yield information on the number of light neutrinos and the mass of the top quark. Finally we discuss how the gluon distribution at very small x may be directly measured at DESY HERA.
Need for a quarkonium observatory

- Many hopes were put in quarkonium studies to extract gluon PDF in photo/lepto production (DIS)
- but also pp collisions in gg-fusion process
- mainly because of the presence of a natural “hard” scale: m_Q
- and the good detectability of a dimuon pair

Production puzzle \rightarrow quarkonium not used anymore in global fits
Many hopes were put in quarkonium studies to extract gluon PDF in photo/lepto production (DIS) but also pp collisions in gg-fusion process mainly because of the presence of a natural “hard” scale: m_Q and the good detectability of a dimuon pair.

Production puzzle \rightarrow quarkonium not used anymore in global fits

With systematic studies, one would restore its status as gluon probe.
AFTER: also a quarkonium observatory in pA

<table>
<thead>
<tr>
<th>Target</th>
<th>A</th>
<th>$\int L ,(fb^{-1}.yr^{-1})$</th>
<th>$N(J/\Psi),yr^{-1}$</th>
<th>$N(\Upsilon),yr^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1cm Be</td>
<td>9</td>
<td>0.62</td>
<td>1.1 10^8</td>
<td>2.2 10^5</td>
</tr>
<tr>
<td>1cm Cu</td>
<td>64</td>
<td>0.42</td>
<td>5.3 10^8</td>
<td>1.1 10^6</td>
</tr>
<tr>
<td>1cm W</td>
<td>185</td>
<td>0.31</td>
<td>1.1 10^9</td>
<td>2.3 10^6</td>
</tr>
<tr>
<td>1cm Pb</td>
<td>207</td>
<td>0.16</td>
<td>6.7 10^8</td>
<td>1.3 10^6</td>
</tr>
<tr>
<td>LHC pPb 8.8 TeV</td>
<td>207</td>
<td>10^{-4}</td>
<td>1.0 10^7</td>
<td>7.5 10^4</td>
</tr>
<tr>
<td>RHIC dAu 200GeV</td>
<td>198</td>
<td>1.5×10^{-4}</td>
<td>2.4 10^6</td>
<td>5.9 10^3</td>
</tr>
<tr>
<td>RHIC dAu 62GeV</td>
<td>198</td>
<td>3.8×10^{-6}</td>
<td>1.2 10^4</td>
<td>18</td>
</tr>
</tbody>
</table>

In principle, one can get **300 times more J/ψ** – not counting the likely wider γ coverage – than at RHIC, allowing for
AFTER: also a quarkonium observatory in \(pA \)

<table>
<thead>
<tr>
<th>Target</th>
<th>A</th>
<th>(\int L) (fb(^{-1}).yr(^{-1}))</th>
<th>(N(J/\Psi)) yr(^{-1})</th>
<th>(N(\Upsilon)) yr(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1cm Be</td>
<td>9</td>
<td>0.62</td>
<td>(1.1 \times 10^8)</td>
<td>(2.2 \times 10^5)</td>
</tr>
<tr>
<td>1cm Cu</td>
<td>64</td>
<td>0.42</td>
<td>(5.3 \times 10^8)</td>
<td>(1.1 \times 10^6)</td>
</tr>
<tr>
<td>1cm W</td>
<td>185</td>
<td>0.31</td>
<td>(1.1 \times 10^9)</td>
<td>(2.3 \times 10^6)</td>
</tr>
<tr>
<td>1cm Pb</td>
<td>207</td>
<td>0.16</td>
<td>(6.7 \times 10^8)</td>
<td>(1.3 \times 10^6)</td>
</tr>
<tr>
<td>LHC pPb 8.8 TeV</td>
<td>207</td>
<td>(10^{-4})</td>
<td>(1.0 \times 10^7)</td>
<td>(7.5 \times 10^4)</td>
</tr>
<tr>
<td>RHIC dAu 200GeV</td>
<td>198</td>
<td>(1.5 \times 10^{-4})</td>
<td>(2.4 \times 10^6)</td>
<td>(5.9 \times 10^3)</td>
</tr>
<tr>
<td>RHIC dAu 62GeV</td>
<td>198</td>
<td>(3.8 \times 10^{-6})</td>
<td>(1.2 \times 10^4)</td>
<td>18</td>
</tr>
</tbody>
</table>

- In principle, one can get **300 times more** \(J/\psi \) –not counting the likely wider \(\gamma \) coverage– than at RHIC, allowing for
 - \(\chi_c \) measurement in \(pA \) via \(J/\psi + \gamma \) (extending Hera-B studies)
AFTER: also a quarkonium observatory in pA

<table>
<thead>
<tr>
<th>Target</th>
<th>A</th>
<th>$\int \mathcal{L} \ (fb^{-1}.yr^{-1})$</th>
<th>$N(J/\Psi) \ yr^{-1}$</th>
<th>$N(\Upsilon) \ yr^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1cm Be</td>
<td>9</td>
<td>0.62</td>
<td>1.1 10^8</td>
<td>2.2 10^5</td>
</tr>
<tr>
<td>1cm Cu</td>
<td>64</td>
<td>0.42</td>
<td>5.3 10^8</td>
<td>1.1 10^6</td>
</tr>
<tr>
<td>1cm W</td>
<td>185</td>
<td>0.31</td>
<td>1.1 10^9</td>
<td>2.3 10^6</td>
</tr>
<tr>
<td>1cm Pb</td>
<td>207</td>
<td>0.16</td>
<td>6.7 10^8</td>
<td>1.3 10^6</td>
</tr>
<tr>
<td>LHC pPb 8.8 TeV</td>
<td>207</td>
<td>10^{-4}</td>
<td>1.0 10^7</td>
<td>7.5 10^4</td>
</tr>
<tr>
<td>RHIC dAu 200GeV</td>
<td>198</td>
<td>1.5×10^{-4}</td>
<td>2.4 10^6</td>
<td>5.9 10^3</td>
</tr>
<tr>
<td>RHIC dAu 62GeV</td>
<td>198</td>
<td>3.8×10^{-6}</td>
<td>1.2 10^4</td>
<td>18</td>
</tr>
</tbody>
</table>

- In principle, one can get **300 times more J/ψ** –not counting the likely wider y coverage– than at RHIC, allowing for
 - χ_c measurement in pA via $J/\psi + \gamma$ (extending Hera-B studies)
 - Polarisation measurement as the centrality, y or P_T
In principle, one can get **300 times more** J/ψ – not counting the likely wider y coverage – than at RHIC, allowing for

- χ_c measurement in pA via $J/\psi + \gamma$ (extending Hera-B studies)
- Polarisation measurement as the centrality, y or P_T
- Ratio ψ' over direct J/ψ measurement in $pA
AFTER: also a quarkonium observatory in \(pA \)

<table>
<thead>
<tr>
<th>Target</th>
<th>(A)</th>
<th>(\int \mathcal{L} , (\text{fb}^{-1}\cdot\text{yr}^{-1}))</th>
<th>(N(J/\Psi) , \text{yr}^{-1}) (= \mathcal{A} L B \sigma_{\Psi})</th>
<th>(N(\Upsilon) , \text{yr}^{-1}) (= \mathcal{A} L B \sigma_{\Upsilon})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1cm Be</td>
<td>9</td>
<td>0.62</td>
<td>1.1 (10^8)</td>
<td>2.2 (10^5)</td>
</tr>
<tr>
<td>1cm Cu</td>
<td>64</td>
<td>0.42</td>
<td>5.3 (10^8)</td>
<td>1.1 (10^6)</td>
</tr>
<tr>
<td>1cm W</td>
<td>185</td>
<td>0.31</td>
<td>1.1 (10^9)</td>
<td>2.3 (10^6)</td>
</tr>
<tr>
<td>1cm Pb</td>
<td>207</td>
<td>0.16</td>
<td>6.7 (10^8)</td>
<td>1.3 (10^6)</td>
</tr>
<tr>
<td>LHC pPb 8.8 TeV</td>
<td>207</td>
<td>(10^{-4})</td>
<td>1.0 (10^7)</td>
<td>7.5 (10^4)</td>
</tr>
<tr>
<td>RHIC dAu 200GeV</td>
<td>198</td>
<td>(1.5 \times 10^{-4})</td>
<td>2.4 (10^6)</td>
<td>5.9 (10^3)</td>
</tr>
<tr>
<td>RHIC dAu 62GeV</td>
<td>198</td>
<td>(3.8 \times 10^{-6})</td>
<td>1.2 (10^4)</td>
<td>18</td>
</tr>
</tbody>
</table>

In principle, one can get **300 times more** \(J/\psi \) —not counting the likely wider \(\gamma \) coverage— than at RHIC, allowing for

- \(\chi_c \) measurement in \(pA \) via \(J/\psi + \gamma \) (extending Hera-B studies)
- Polarisation measurement as the centrality, \(\gamma \) or \(P_T \)
- Ratio \(\psi' \) over direct \(J/\psi \) measurement in \(pA \)
- not to mention ratio with **open charm, Drell-Yan**, etc ...
What for?

- The **target versatility** of a fixed-target experiment is undisputable.

 - A wide rapidity coverage is needed for:
 - Precise analysis of gluon nuclear PDF: $y \leftrightarrow x^2$
 - A handle on formation time effects
 - Strong need for cross checks from various measurements
 - The backward kinematics is very useful for large-x target studies

What is the amount of Intrinsic charm? Is it color filtered?

Is there an EMC effect for gluon? (Reminder: EMC region $0.3 < x < 0.7$)

One should be careful with factorization breaking effects:

This calls for multiple measurements to (in)validate factorization.
What for?

- The **target versatility** of a fixed-target experiment is undisputable.

- A **wide rapidity coverage** is needed for:
 - a precise analysis of gluon nuclear PDF: $y, p_T \leftrightarrow x_2$
 - a handle on **formation time effects**

J.P. Lansberg (IPNO, Paris-Sud U.)

A Fixed-Target Experiment at the LHC

October 2, 2014 47 / 40
What for?

- The **target versatility** of a fixed-target experiment is undisputable

- A **wide rapidity coverage** is needed for:
 - a precise analysis of **gluon nuclear PDF**: \(y, p_T \leftrightarrow x_2 \)
 - a handle on **formation time effects**

- Strong need for **cross checks** from various measurements
What for?

- The **target versatility** of a fixed-target experiment is undisputable

- A **wide rapidity coverage** is needed for:
 - a precise analysis of **gluon nuclear PDF**: \(y, p_T \leftrightarrow x_2 \)
 - a handle on **formation time effects**

- Strong need for **cross checks** from various measurements

- The **backward kinematics** is very useful for large-\(x_{target}\) studies
What for?

- The **target versatility** of a fixed-target experiment is undisputable.

- A **wide rapidity coverage** is needed for:
 - A precise analysis of gluon nuclear PDF: $y, p_T \leftrightarrow x_2$
 - A handle on formation time effects

- Strong need for **cross checks** from various measurements.

- The **backward kinematics** is very useful for large-x_{target} studies:
 - What is the amount of Intrinsic charm? Is it color filtered?
What for?

- The **target versatility** of a fixed-target experiment is undisputable

- A **wide rapidity coverage** is needed for:
 - a precise analysis of **gluon nuclear PDF**: $y, p_T \leftrightarrow x_2$
 - a handle on **formation time effects**

- Strong need for **cross checks** from various measurements

- The **backward kinematics** is very useful for large-x_{target} studies
 - What is the amount of Intrinsic charm? Is it color filtered?
 - Is there an EMC effect for gluon? (reminder: EMC region $0.3 < x < 0.7$)
What for?

- The **target versatility** of a fixed-target experiment is undisputable.
 - A wide rapidity coverage is needed for:
 - a precise analysis of gluon nuclear PDF: $y, p_T \leftrightarrow x_2$
 - a handle on formation time effects

- Strong need for **cross checks** from various measurements.

- The **backward kinematics** is very useful for large-x_{target} studies:
 - What is the amount of Intrinsic charm? Is it color filtered?
 - Is there an EMC effect for gluon? (reminder: EMC region $0.3 < x < 0.7$)

- One should be careful with factorization breaking effects:
 - This calls for **multiple measurements** to (in)validate factorization.
AFTER: also an heavy-flavour observatory in PbA

Luminosities and yields with the extracted 2.76 TeV Pb beam
\((\sqrt{s_{NN}} = 72 \text{ GeV}) \)

<table>
<thead>
<tr>
<th>Target</th>
<th>A.B</th>
<th>(\int \mathcal{L}) ((\text{nb}^{-1}.\text{yr}^{-1}))</th>
<th>(N(J/\Psi)) yr(^{-1}) = (ABLB\sigma_\Psi)</th>
<th>(N(\Upsilon)) yr(^{-1}) = (ABLB\sigma_\Upsilon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m Liq. H(_2)</td>
<td>207.1</td>
<td>800</td>
<td>(3.4 \times 10^6)</td>
<td>(6.9 \times 10^3)</td>
</tr>
<tr>
<td>1 cm Be</td>
<td>207.9</td>
<td>25</td>
<td>(9.1 \times 10^5)</td>
<td>(1.9 \times 10^3)</td>
</tr>
<tr>
<td>1 cm Cu</td>
<td>207.64</td>
<td>17</td>
<td>(4.3 \times 10^6)</td>
<td>(0.9 \times 10^3)</td>
</tr>
<tr>
<td>1 cm W</td>
<td>207.185</td>
<td>13</td>
<td>(9.7 \times 10^6)</td>
<td>(1.9 \times 10^4)</td>
</tr>
<tr>
<td>1 cm Pb</td>
<td>207.207</td>
<td>7</td>
<td>(5.7 \times 10^6)</td>
<td>(1.1 \times 10^4)</td>
</tr>
<tr>
<td>LHC PbPb 5.5 TeV</td>
<td>207.207</td>
<td>0.5</td>
<td>(7.3 \times 10^6)</td>
<td>(3.6 \times 10^4)</td>
</tr>
<tr>
<td>RHIC AuAu 200GeV</td>
<td>198.198</td>
<td>2.8</td>
<td>(4.4 \times 10^6)</td>
<td>(1.1 \times 10^4)</td>
</tr>
<tr>
<td>RHIC AuAu 62GeV</td>
<td>198.198</td>
<td>0.13</td>
<td>(4.0 \times 10^4)</td>
<td>(61)</td>
</tr>
</tbody>
</table>
AFTER: also an heavy-flavour observatory in \(PbA \)

- Luminosities and yields with the extracted 2.76 TeV Pb beam
 \((\sqrt{s_{NN}} = 72 \text{ GeV})\)

<table>
<thead>
<tr>
<th>Target</th>
<th>A.B</th>
<th>(\int L) (nb(^{-1}).yr(^{-1}))</th>
<th>(N(J/\Psi) \text{ yr}^{-1} = ABLB\sigma_{\Psi})</th>
<th>(N(\Upsilon) \text{ yr}^{-1} = ABLB\sigma_{\Upsilon})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m Liq. H(_2)</td>
<td>207.1</td>
<td>800</td>
<td>(3.4 \times 10^6)</td>
<td>(6.9 \times 10^3)</td>
</tr>
<tr>
<td>1 cm Be</td>
<td>207.9</td>
<td>25</td>
<td>(9.1 \times 10^5)</td>
<td>(1.9 \times 10^3)</td>
</tr>
<tr>
<td>1 cm Cu</td>
<td>207.64</td>
<td>17</td>
<td>(4.3 \times 10^6)</td>
<td>(0.9 \times 10^3)</td>
</tr>
<tr>
<td>1 cm W</td>
<td>207.185</td>
<td>13</td>
<td>(9.7 \times 10^6)</td>
<td>(1.9 \times 10^4)</td>
</tr>
<tr>
<td>1 cm Pb</td>
<td>207.207</td>
<td>7</td>
<td>(5.7 \times 10^6)</td>
<td>(1.1 \times 10^4)</td>
</tr>
<tr>
<td>LHC PbPb 5.5 TeV</td>
<td>207.207</td>
<td>0.5</td>
<td>(7.3 \times 10^6)</td>
<td>(3.6 \times 10^4)</td>
</tr>
<tr>
<td>RHIC AuAu 200 GeV</td>
<td>198.198</td>
<td>2.8</td>
<td>(4.4 \times 10^6)</td>
<td>(1.1 \times 10^4)</td>
</tr>
<tr>
<td>RHIC AuAu 62 GeV</td>
<td>198.198</td>
<td>0.13</td>
<td>(4.0 \times 10^4)</td>
<td>61</td>
</tr>
</tbody>
</table>

- Yields similar to those of RHIC at 200 GeV, 100 times those of RHIC at 62 GeV
AFTER: also an heavy-flavour observatory in *PbA*

- Luminosities and yields with the extracted 2.76 TeV Pb beam ($\sqrt{s_{NN}} = 72$ GeV)

<table>
<thead>
<tr>
<th>Target</th>
<th>A.B</th>
<th>$\int L$ (nb⁻¹.yr⁻¹)</th>
<th>N(J/Ψ) yr⁻¹</th>
<th>N(Υ) yr⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m Liq. H₂</td>
<td>207.1</td>
<td>800</td>
<td>3.4 10^6</td>
<td>6.9 10^3</td>
</tr>
<tr>
<td>1 cm Be</td>
<td>207.9</td>
<td>25</td>
<td>9.1 10^5</td>
<td>1.9 10^3</td>
</tr>
<tr>
<td>1 cm Cu</td>
<td>207.64</td>
<td>17</td>
<td>4.3 10^6</td>
<td>0.9 10^3</td>
</tr>
<tr>
<td>1 cm W</td>
<td>207.185</td>
<td>13</td>
<td>9.7 10^6</td>
<td>1.9 10^4</td>
</tr>
<tr>
<td>1 cm Pb</td>
<td>207.207</td>
<td>7</td>
<td>5.7 10^6</td>
<td>1.1 10^4</td>
</tr>
<tr>
<td>LHC PbPb 5.5 TeV</td>
<td>207.207</td>
<td>0.5</td>
<td>7.3 10^6</td>
<td>3.6 10^4</td>
</tr>
<tr>
<td>RHIC AuAu 200 GeV</td>
<td>198.198</td>
<td>2.8</td>
<td>4.4 10^6</td>
<td>1.1 10^4</td>
</tr>
<tr>
<td>RHIC AuAu 62 GeV</td>
<td>198.198</td>
<td>0.13</td>
<td>4.0 10^4</td>
<td>61</td>
</tr>
</tbody>
</table>

- Yields **similar** to those of RHIC at 200 GeV,
- 100 times those of RHIC at 62 GeV
- Also **very competitive** compared to the LHC.
AFTER: also an heavy-flavour observatory in \(\text{PbA} \)

- Luminosities and yields with the extracted 2.76 TeV Pb beam
 \((\sqrt{s_{NN}} = 72 \text{ GeV}) \)

<table>
<thead>
<tr>
<th>Target</th>
<th>A.B</th>
<th>(\int L) (nb(^{-1}).yr(^{-1}))</th>
<th>(N(J/\Psi)) yr(^{-1}) = AB (L) (B) (\sigma_\Psi)</th>
<th>(N(\Upsilon)) yr(^{-1}) = AB (L) (B) (\sigma_\Upsilon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m Liq. (\text{H}_2)</td>
<td>207.1</td>
<td>800</td>
<td>(3.4 \times 10^6)</td>
<td>(6.9 \times 10^3)</td>
</tr>
<tr>
<td>1 cm Be</td>
<td>207.9</td>
<td>25</td>
<td>(9.1 \times 10^5)</td>
<td>(1.9 \times 10^3)</td>
</tr>
<tr>
<td>1 cm Cu</td>
<td>207.64</td>
<td>17</td>
<td>(4.3 \times 10^6)</td>
<td>(0.9 \times 10^3)</td>
</tr>
<tr>
<td>1 cm W</td>
<td>207.185</td>
<td>13</td>
<td>(9.7 \times 10^6)</td>
<td>(1.9 \times 10^4)</td>
</tr>
<tr>
<td>1 cm Pb</td>
<td>207.207</td>
<td>7</td>
<td>(5.7 \times 10^6)</td>
<td>(1.1 \times 10^4)</td>
</tr>
<tr>
<td>LHC PbPb 5.5 TeV</td>
<td>207.207</td>
<td>0.5</td>
<td>(7.3 \times 10^6)</td>
<td>(3.6 \times 10^4)</td>
</tr>
<tr>
<td>RHIC AuAu 200 GeV</td>
<td>198.198</td>
<td>2.8</td>
<td>(4.4 \times 10^6)</td>
<td>(1.1 \times 10^4)</td>
</tr>
<tr>
<td>RHIC AuAu 62 GeV</td>
<td>198.198</td>
<td>0.13</td>
<td>(4.0 \times 10^4)</td>
<td>(61)</td>
</tr>
</tbody>
</table>

- Yields similar to those of RHIC at 200 GeV,
 100 times those of RHIC at 62 GeV
- Also very competitive compared to the LHC.

The same picture also holds for open heavy flavour
What for?

Observation of J/ψ sequential suppression seems to be hindered by
- the Cold Nuclear Matter effects: non trivial and
 ... not well understood
Observation of J/ψ sequential suppression seems to be hindered by
- the Cold Nuclear Matter effects: non trivial and ... not well understood
- the difficulty to observe directly the excited states which would melt before the ground states
 - χ_c never studied in AA collisions
 - $\psi(2S)$ not yet studied in AA collisions at RHIC
What for?

Observation of J/ψ sequential suppression seems to be hindered by
- the Cold Nuclear Matter effects: non trivial and ... not well understood
- the difficulty to observe directly the excited states which would melt before the ground states
 - χ_c never studied in AA collisions
 - $\psi(2S)$ not yet studied in AA collisions at RHIC
- the possibilities for $c\bar{c}$ recombination
 - Open charm studies are difficult where recombination matters most i.e. at low P_T
 - Only indirect indications –from the y and P_T dependence of R_{AA}– that recombination may be at work
 - CNM effects may show a non-trivial y and P_T dependence ...
SPS and Hera-B

– J/ψ data in pA collisions

SPS and Hera-B

- J/ψ data in pA collisions

- χ_c data in pA collisions

HERA-B PRD 79 (2009) 012001, and ref. therein
LHB

Our idea is not completely new

LHB, a fixed target experiment at LHC to measure CP violation in B mesons
Flavio Costantini
University of Pisa and INFN, Italy

A fixed target experiment at LHC to measure CP violation in B mesons is presented. A description of the proposed apparatus is given together with its sensitivity on the CP violation asymmetry measurement for the two benchmark decay channels \(B^0 \rightarrow J/\psi + K^0_s \), \(B^0 \rightarrow \pi^+ \pi^- \). The possibility of obtaining an extracted LHC beam hinges on channeling in a bent silicon crystal. Recent results on beam extraction efficiencies measured at CERN SPS based on this technique are presented.
LHB

Our idea is not completely new

1. Introduction

This paper presents a fixed target experiment to measure CP violation in the B system based on the possibility of extracting the 8 TeV LHC proton beam using a bent silicon crystal [4]. A 10% extraction efficiency of the LHC beam halo will give an extracted beam intensity of about 10^8 protons/s allowing the production of as many as 10^{10} $B\bar{B}$ pairs per year, i.e. about two orders of magnitude more than what could be produced by an e^+e^- asymmetric B factory with 10^{34} cm$^{-2}$s$^{-1}$ luminosity [5].
1. Introduction

This paper presents a fixed target experiment to measure CP violation in the B system based on the possibility of extracting the 8 TeV LHC proton beam using a bent silicon crystal [4]. A 10% extraction efficiency of the LHC beam halo will give an extracted beam intensity of about 10^8 protons/s allowing the production of as many as $10^{10} \overline{B}B$ pairs per year, i.e. about two orders of magnitude more than what could be produced by an e^+e^- asymmetric B factory with $10^{34} \text{ cm}^{-2}\text{s}^{-1}$ luminosity [5].

- B-factories: 1 ab$^{-1}$ means $10^9 \overline{B}B$ pairs
LHB

Our idea is not completely new

1. Introduction
...

This paper presents a fixed target experiment to measure CP violation in the B system based on the possibility of extracting the 8 TeV LHC proton beam using a bent silicon crystal [4]. A 10% extraction efficiency of the LHC beam halo will give an extracted beam intensity of about 10^8 protons/s allowing the production of as many as 10^{10} $B\bar{B}$ pairs per year, i.e. about two orders of magnitude more than what could be produced by an e^+e^- asymmetric B factory with 10^{34} cm$^{-2}$s$^{-1}$ luminosity [5].

- B-factories: 1 ab$^{-1}$ means 10^9 $B\bar{B}$ pairs
- For LHCb, typically 1 fb$^{-1}$ means $\sim 2 \times 10^{11}$ $B\bar{B}$ pairs at 14 TeV
LHB

Our idea is not completely new

1. Introduction

This paper presents a fixed target experiment to measure CP violation in the B system based on the possibility of extracting the 8 TeV LHC proton beam using a bent silicon crystal [4]. A 10% extraction efficiency of the LHC beam halo will give an extracted beam intensity of about 10^8 protons/s allowing the production of as many as 10^{10} $B\bar{B}$ pairs per year, i.e. about two orders of magnitude more than what could be produced by an e^+e^- asymmetric B factory with 10^{34} cm$^{-2}$s$^{-1}$ luminosity [5].

- B-factories: 1 ab$^{-1}$ means $10^9 B\bar{B}$ pairs
- For LHCb, typically 1 fb$^{-1}$ means $\sim 2 \times 10^{11} B\bar{B}$ pairs at 14 TeV
- LHB turned down in favour of LHCb mainly because of the fear of a premature degradation of the bent crystal due to radiation damages.
Our idea is not completely new

1. Introduction

This paper presents a fixed target experiment to measure CP violation in the B system based on the possibility of extracting the 8 TeV LHC proton beam using a bent silicon crystal [4]. A 10% extraction efficiency of the LHC beam halo will give an extracted beam intensity of about 10^8 protons/s allowing the production of as many as 10^{10} $B\bar{B}$ pairs per year, i.e. about two orders of magnitude more than what could be produced by an e^+e^- asymmetric B factory with 10^{34} cm$^{-2}$s$^{-1}$ luminosity [5].

- B-factories: 1 ab$^{-1}$ means $10^9 B\bar{B}$ pairs
- For LHCb, typically 1 fb$^{-1}$ means $\sim 2 \times 10^{11} B\bar{B}$ pairs at 14 TeV
- LHB turned down in favour of LHCb mainly because of the fear of a premature degradation of the bent crystal due to radiation damages.
- Nowadays, degradation is known to be $\sim 6\%$ per 10^{20} particles/cm2
- 10^{20} particles/cm2: one year of operation for realistic conditions
LHB

Our idea is not completely new

1. Introduction

This paper presents a fixed target experiment to measure CP violation in the B system based on the possibility of extracting the 8 TeV LHC proton beam using a bent silicon crystal [4]. A 10% extraction efficiency of the LHC beam halo will give an extracted beam intensity of about 10^8 protons/s allowing the production of as many as 10^{10} $B\bar{B}$ pairs per year, i.e. about two orders of magnitude more than what could be produced by an e^+e^- asymmetric B factory with 10^{24} cm$^{-2}$s$^{-1}$ luminosity [5].

- B-factories: 1 ab$^{-1}$ means $10^9B\bar{B}$ pairs
- For LHCb, typically 1 fb$^{-1}$ means $\simeq 2 \times 10^{11} B\bar{B}$ pairs at 14 TeV
- LHB turned down in favour of LHCb mainly because of the fear of a premature degradation of the bent crystal due to radiation damages.
- Nowadays, degradation is known to be $\simeq 6\%$ per 10^{20} particles/cm2
- 10^{20} particles/cm2: one year of operation for realistic conditions
- After a year, one simply moves the crystal by less than one mm ...
Further key studies?

(Multiply) heavy baryons:
Further key studies?

(Multiply) heavy baryons:

- $\Lambda_b \rightarrow \Lambda J/\psi$
Further key studies?

(Multiply) heavy baryons:

- $\Lambda_b \rightarrow \Lambda J/\psi$
- $d\sigma(b)/dy|_{y=0} \gtrsim 100$ nb

$N(b)/\text{year} \simeq 2 \times 10^6 \times 20 = 4 \times 10^9$

$B(\Lambda_b \rightarrow \Lambda J/\psi \Lambda) = 5.8 \pm 0.8 \times 10^{-5}$

$(B(J/\psi \rightarrow \mu\mu) = 6\%)$

$15,000 \Lambda_b \rightarrow J/\psi \Lambda \rightarrow \mu^+ \mu^- \Lambda$ events: enough to perform a polarisation measurement (see e.g. LHCb arXiv:1302.5578 [hep-ex])

$\Xi_{cc}, \Omega^{++}(ccc)$ cross sections in the central region are being calculated with the MC generator GENXICC

They should also be calculated for xF_{-1} where IQ could dominate.
Further key studies?

(Multiply) heavy baryons:

- $\Lambda_b \rightarrow \Lambda J/\psi$
 - $d\sigma(b)/dy|_{y=0} \gtrsim 100$ \text{nb}
 - $\mathcal{N}(b)/\text{year} \simeq 2 \times 100 \times 10^6 \times 20 = 4 \times 10^9$

Ξ_{cc}, ..., cross sections in the central region are being calculated with the MC generator GENXICC.

they should also be calculated for $x_F \rightarrow -1$ where IQ could dominate.
Further key studies?

(Multiply) heavy baryons:

- $\Lambda_b \rightarrow \Lambda J/\psi$
 - $d\sigma(b)/dy|_{y=0} \gtrsim 100 \text{ nb}$

- $N(b)/year \simeq 2 \times 100 \times 10^6 \times 20 = 4 \times 10^9$

- $\mathcal{B}(b \rightarrow \Lambda_b) \times \mathcal{B}(\Lambda_b \rightarrow J/\psi \Lambda) = 5.8 \pm 0.8 \times 10^{-5}$

 ($\mathcal{B}(J/\psi \rightarrow \mu \mu) = 6\%$)
Further key studies?

(Multiply) heavy baryons:

- \(\Lambda_b \to \Lambda J/\psi \)
 - \(d\sigma(b)/dy|_{y=0} \gtrsim 100 \text{ nb} \)
 - \(N(b)/\text{year} \simeq 2 \times 100 \times 10^6 \times 20 = 4 \times 10^9 \)
 - \(\mathcal{B}(b \to \Lambda_b) \times \mathcal{B}(\Lambda_b \to J/\psi \Lambda) = 5.8 \pm 0.8 \times 10^{-5} \)
 \(\mathcal{B}(J/\psi \to \mu\mu) = 6\% \)
 - 15 000 \(\Lambda_b \to J/\psi \Lambda \to \mu^+\mu^- \Lambda \) events: enough to perform a polarisation measurement

see e.g. LHCb arXiv:1302.5578 [hep-ex]
Further key studies?

(Multiply) heavy baryons:

- $\Lambda_b \rightarrow \Lambda J/\psi$
 - $d\sigma(b)/dy|_{y=0} \gtrsim 100 \text{ nb}$

- $N(b)/year \simeq 2 \times 100 \times 10^6 \times 20 = 4 \times 10^9$

- $\mathcal{B}(b \rightarrow \Lambda_b) \times \mathcal{B}(\Lambda_b \rightarrow J/\psi \Lambda) = 5.8 \pm 0.8 \times 10^{-5}$
 - $\mathcal{B}(J/\psi \rightarrow \mu \mu) = 6\%$

- 15 000 $\Lambda_b \rightarrow J/\psi \Lambda \rightarrow \mu^+ \mu^- \Lambda$ events: enough to perform a polarisation measurement

- discovery potential? ($\Xi_{cc}, \Omega^{++}(ccc)$, ...)

see e.g. LHCb arXiv:1302.5578 [hep-ex]
Further key studies?

(Multiply) heavy baryons:

- \(\Lambda_b \rightarrow \Lambda J/\psi \)
- \(d\sigma(b)/dy|_{y=0} \gtrsim 100 \text{ nb} \)
- \(N(b)/\text{year} \simeq 2 \times 100 \times 10^6 \times 20 = 4 \times 10^9 \)
- \(\mathcal{B}(b \rightarrow \Lambda_b) \times \mathcal{B}(\Lambda_b \rightarrow J/\psi \Lambda) = 5.8 \pm 0.8 \times 10^{-5} \)
 \((\mathcal{B}(J/\psi \rightarrow \mu \mu) = 6\%) \)
- 15 000 \(\Lambda_b \rightarrow J/\psi \Lambda \rightarrow \mu^+ \mu^- \Lambda \) events: enough to perform a polarisation measurement

- discovery potential? \((\Xi_{cc}, \Omega^{++}(ccc), \ldots) \)
- \(\Xi_{cc}, \ldots \), cross sections in the central region are being calculated with the MC generator GENXICC

see e.g. LHCb arXiv:1302.5578 [hep-ex]
Further key studies?

(Multiply) heavy baryons:

- $\Lambda_b \to \Lambda J/\psi$
 - $d\sigma(b)/dy|_{y=0} \gtrsim 100 \text{ nb}$

- $N(b)\text{/year} \simeq 2 \times 100 \times 10^6 \times 20 = 4 \times 10^9$

- $\mathcal{B}(b \to \Lambda_b) \times \mathcal{B}(\Lambda_b \to J/\psi \Lambda) = 5.8 \pm 0.8 \times 10^{-5}$
 - $\mathcal{B}(J/\psi \to \mu\mu) = 6\%$

- 15 000 $\Lambda_b \to J/\psi \Lambda \to \mu^+\mu^- \Lambda$ events: enough to perform a polarisation measurement

- discovery potential? ($\Xi_{cc}, \Omega^{++}(ccc), ...$)
 - $\Xi_{cc}, ...$, cross sections in the central region are being calculated with the MC generator GENXICC

- they should also be calculated for $x_F \to -1$

see e.g. LHCb arXiv:1302.5578 [hep-ex]

Isolated-γ in $p(7$ TeV$)$-p(rest): $\sqrt{s} \sim 115$ GeV

- p-p photon kinematics at fixed-target LHC (central rapidities):
 To access $x > 0.3$ one needs isolated-γ at: $p_T = x_T \sqrt{s}/2 > 20$ GeV/c

- JETPHOX NLO
 pQCD calculations:

 p-p at $\sqrt{s}=115$ GeV
 $|y|<0.5$, $p_T > 20$ GeV/c
 Isolation: $R = 0.4$, $E_T^{\text{had}} < 5$ GeV

 \mathcal{L} (10 cm H_2-target) $\sim 2 \times 10^3$ pb$^{-1}$/year

PDF: CT10 52 eigenval. (90% CL)
Scales: $\mu_r = p_T$
FF = BFG-II
\times-section uncertainties(*) of $\pm 150\%$

(*) (68%CL)/(90% CL) ~ 1.65