Abundance distribution of neutron-capture elements in very metal-poor stars

Wako Aoki
National Astronomical Observatory of Japan
Abundance distribution of neutron-capture elements in very metal-poor stars

- Sr/Ba ratios
- Ba isotope ratios
- Diversity of the weak r-process
Definition

- **Chemical abundance**: abundance ratio with respect to H

 \[
 \log \varepsilon(X) \text{ or } \log A(X) = \log(X/H) + 12
 \]

 ex. \(\text{Fe/H}=10^{-4.5} \rightarrow \log \varepsilon(\text{Fe})=7.5 \)

 \[
 [X/Y] = \log(X/Y)-\log(X/Y)_{\text{sun}}
 \]

 ex. \([\text{Fe/H}]=-2.0 \rightarrow 1/100 \text{ of the solar Fe/H ratio}\)

- **Metallicity**: total abundance of heavy elements (elements heavier than boron)

 important for stellar structure and evolution

 sometimes presented as mass ratio

 ex. Solar metallicity = 0.02 (2%) or slightly lower

 usually represented by [Fe/H]
“main” and “weak” r-process abundance pattern

CS22892-052

Sneden et al. (2003)

HD122563

Honda et al. (2006)

Atomic number

logA(X)
Spectral features of “Sneden star” and “Honda star”
RED GIANTS WITH EXTREME METAL DEFICIENCIES*

GEORGE WALLERSTEIN
Berkeley Astronomical Department, University of California

JESSE L. GREENSTEIN AND ROBERT PARKER
Mount Wilson and Palomar Observatories
Carnegie Institution of Washington, California Institute of Technology

H. L. HELFER
Department of Physics and Astronomy, University of Rochester

AND

LAWRENCE H. ALLER
University of Michigan Observatory
Received July 23, 1962

ABSTRACT

The three field stars, HD 122563, HD 165195, and HD 221170, similar to giants in metal-poor globular clusters, which we have studied, show decreases in the average metal/hydrogen ratios by factors of 800, 500, and 500, respectively, compared with the sun. The abundance ratios of other elements to iron resemble those in the sun, with important exceptions. Manganese and vanadium are deficient with respect to iron, by a factor of 3. In HD 122563 all elements heavier than zinc are deficient compared with iron by a factor of 50, yielding a total deficiency of about 50,000 for the heavy elements.

We interpret these observations by assuming that the elements were synthesized from hydrogen early in the history of our Galaxy. These stars were formed when the interstellar medium was almost entirely hydrogen, between 10^7 and 10^8 years after star formation began. Their metallic constituents were formed...

THE r- AND s-PROCESS NUCLEI IN THE EARLY HISTORY OF THE GALAXY: HD 122563

CHRISTOPHER SNEDEN AND M. PARTHASARATHY
Department of Astronomy, University of Texas at Austin
Received 1982 July 26; accepted 1982 October 7

ABSTRACT

New high-resolution, high signal-to-noise spectra in the blue and ultraviolet spectral regions have been obtained for the extremely metal-poor giant star HD 122563. A complete model atmosphere, spectrum synthesis analysis of this star has been performed, employing a large number of weak iron-peak species lines and laboratory oscillator strengths. Spectral features of many rare earth elements have been detected in the ultraviolet. The large overdeficiency of nearly a factor of 10 for the s-process element barium is confirmed and is shown to extend to the other s-process elements La, Ce, Pr, Nd, and Sm. The r-process elements Eu, Gd, Dy, and possibly Er and Yb are less deficient than the s-process elements but do exhibit lower ratios with respect to iron-peak elements than in the Sun. A supplementary differential analysis of HD 122563 with respect to the Sun shows that the heavy-element abundances are not very model-atmosphere dependent. The heavy-element abundances can be understood with nucleosynthesis models in which the progenitors of this star produce mainly r-process isotopes. A small contribution of the s-process to the creation of the elements Sr, Y, Zr, and possibly Ba is not ruled out, but such traditional s-process elements as La, Pr, and Nd appear to have been made in the r-process in stellar generations prior to the formation of HD 122563.
HD122563, the "Honda star"

Fig. 6.—Element abundances in HD 122563. The lower temperature model was employed for these abundances.
HD122563, the “Honda star”

NEUTRON-CAPTURE ELEMENTS IN THE VER

S. Honda, W. Aoki, Y. Ishimaru, S. V.

Received 2005 December 23; accept

ABSTRACT

We obtained high-resolution, high signal-to-noise ratio (S/N) 122563 with the Subaru Telescope High Dispersion Spectrograph excesses of light neutron-capture elements, while its abundance which covers 3070–4780 Å of this object, 19 neutron-capture elements first time in this star (Nb, Mo, Ru, Pd, Ag, Pr, and Sm). Upper line The abundance pattern shows a gradually decreasing trend, as a function quite different from those in stars with excesses of r-process elements provides new strong constraints on the models of nucleosynthesis with excesses of light neutron-capture elements but without enh

Subaru Telescope
90 minutes exposure
R=90,000
S/N~1000@4000Å, 140@3100Å

Wavelength (Å)
"main" and "weak" r-process abundance pattern

CS22892-052

HD122563
Abundance measurements from spectral lines

- Weak lines are preferable for abundance measurements, because they are sensitive to abundance change.
- Strong lines are useful to study whole sample covering a wide abundance range.

Gray (2005)
Singly ionized Sr and Ba have strong resonance lines.
Chemical abundances of solar-system material

Sr and Ba are the 1st and 2nd peak elements corresponding to the neutron magic numbers 50 and 82, respectively.
Figure 1. Results for (a) [Sr/Fe], (b) [Ba/Fe], and (c) [Sr/Ba] assuming a tr-process. The red dashed line corresponds to a GCE model with no production in a tr-process, and the blue dashed line corresponds to a GCE model with a primary production from a tr-process for all stars with $M \geq 20 M_\odot$. Plot (d) shows GCE results for single-site tr-process production for turbulent ejection of specific shells assuming only those shells are ejected.
Sr and Ba (and Eu) abundance distributions

- **r-II stars**

- **BD+80 245 (α deficient)**

- **r-process**
Low Sr/Ba stars

C-rich stars: s-process contamination
Low Sr/Ba stars
Low Sr/Ba stars

CS22950-173 Binary
CS22941-005 binary, Ba-rich
CS22946-011 binary, Ba-rich
HE0305-4520 "C-rich"
CS29493-090 moderately C-, Ba-rich
CS30322-023 C, N-rich, Ba-rich

Questions about Sr and Ba abundances in very metal-poor stars

1. Existence (or absence) of the cut-off at [Fe/H]=-3.5, below which Sr and Ba abundance scatter is small.

2. Origin of (the small amount of) Sr and Ba in stars with [Fe/H]=-3.5: small yields by CCSN?

3. Reason for the upper bound in Sr/Ba distribution ([Sr/Ba]~ -1.5 - [Fe/H])
Ba isotope ratios
Ba isotopes

Solar-system abundances
Arlandini et al. (1999)
Ba isotope ratios in the very metal-poor star HD140283: $f_{\text{odd}} = (^{135}\text{Ba} + ^{137}\text{Ba}) / \text{Ba}$

No detection of odd Ba isotopes in HD140283 ([Fe/H] = -2.5) → Is Ba originated from s-process at this metallicity?

Fig. 9. Synthetic Ba II line profiles computed with $f_{\text{odd}} = 1.0$, 0.5 and 0.0 (curves) compared with the average data
Ba isotope ratios in the very metal-poor star HD140283: \[f_{\text{odd}} = \frac{^{135}\text{Ba} + ^{137}\text{Ba}}{\text{Ba}} \]

Gallagher et al. (2010)
Ba isotope ratios

\[f_{\text{odd}} = \frac{(^{135}\text{Ba} + ^{137}\text{Ba})}{\text{Ba}} \]

Gallagher, Ryan, Garcia-Perez, Aoki 2010, A&A

Lambert & Allende-Prieto (2002)

Collet et al. 2009

Magain (1995)

Gallagher et al. (2010)

Fig. 1. a) Relation between \(f_{\text{odd}} \) and the \(r \)-process contribution calculated from Arlandini et al. (1999). Coefficients are given where \(f_{\text{odd}} = a \times r \)-process (%) + \(b \). b) LAP02: the Lambert & Allende Prieto (2002) result for \(f_{\text{odd}} \). M95: the Magain (1995) result for \(f_{\text{odd}} \). CAN1D: the Collet et al. (2009) 1D LTE result for \(f_{\text{odd}} \). CAN3D: the Collet et al. (2009) 3D hydrodynamical result for \(f_{\text{odd}} \).
Ba isotope ratios based on 3D model atmosphere

- $f_{\text{obs}} = 0.33$
- $v_{\text{sin}i} = 0.50$ km/s
- FWHM = 4.87 km/s
- $\xi = 1.49$ km/s

- $f_{\text{obs}} = 0.15$
- $v_{\text{sin}i} = 2.58$ km/s
- FWHM = 1.5 km/s
New result on Ba isotope ratios based on 3D model atmosphere

Gallagher et al. (in prep)
Re-analysis of Ba isotope ratios based on 3D model atmosphere

Fig. 10. The best fit 3D (solid black line – $f_{\text{odd}} = 0.38$) and 1D (dashed red line – $f_{\text{odd}} = 0.02$ from PAPER1) fits to the observed Ba n 4554 Å profile (black diamonds). A residual plot is presented in the bottom panel. We have also included a lower isotope ratio fit to the observed profile (dashed-dot line) for $f_{\text{odd}} = 0.25$, i.e. 40%, for the same $v \sin i$ and A(Ba) values used in the best fit.
Ba isotope ratios

\[f_{\text{odd}} = \frac{^{135}\text{Ba} + ^{137}\text{Ba}}{\text{Ba}} \]

Gallagher, Ryan, Garcia-Perez, Aoki 2010, A&A

Lambert & Allende-Prieto (2002)

Collet et al. 2009

Magain (1995)

Gallagher et al. (2010) 1D

Gallagher et al. (in prep) 3D

Fig 1. a) Relation between \(f_{\text{odd}} \) and the \(r \)-process contribution calculated from Arlandini et al. (1999). Coefficients are given where \(f_{\text{odd}} = \alpha \times r \)-process (\%) + \(b \). b) LAP02: the Lambert & Allende Prieto (2002) result for \(f_{\text{odd}} \). M95: the Magain (1995) result for \(f_{\text{odd}} \). CAN1D: the Collet et al. (2009) 1D LTE result for \(f_{\text{odd}} \). CAN3D: the Collet et al. (2009) 3D hydrodynamical result for \(f_{\text{odd}} \).