Nuclear Physics in Generators: what needs to be done

Ulrich Mosel
Reaction Types

3 major reaction types relevant:

1. QE scattering
 i. true QE (single particle interaction)
 ii. many-particle interactions (RPA + 2p2h + spectral functions)

2. Pion production

3. SIS and DIS

All reaction types are entangled:
final states may look the same
Neutrino Beams

- Neutrinos do not have fixed energy nor just one reaction mechanism

Have to reconstruct energy from final state of reaction
Different processes are entangled; final states may look the same
QE Scattering

- Many-body aspects:
 - Spectral functions (selfenergy correction)
 - RPA (selfenergy + vertex correction)
 - 2p-2h interactions (selfenergy + vertex correction)

Danger: Double Counting
consistent theory is still being developed (Barbaro, Benhar, Carlson, Martini, Nieves,..)

- Is there a shortcut (*educated* guess) for generators?
QE: 2p-2h correlations

1. Up to what \((Q^2, \nu)\) are existing theories (Martini, Nieves) valid?

2. Dependence on energy (or, better, \(Q^2\) and \(\nu\))? Do they die off with inv. mass \(W\) as in the Bosted analysis for MEC contribs in inclusive e-scattering?

3. Need parametrization of 2p-2h hadron tensor for generator (educated guess in GiBUU: \(H_{\mu\nu} \sim F(Q^2) P_T\), strength fitted)

4. Calculate consistently not just inclusive, but also semi-inclusive channels, with knock-out particles

INT 12/2013
Many-body effects in QE

- **SRC** in neutrino interactions???
 - All neutrino reactions so far are (semi)-inclusive and $Q^2 < 1$ GeV
 - SRC (or high-momentum tails) for electrons essential at $Q^2 > 1.5$ GeV2 and $x_{BJ} > 2$

- **Quasideuteron effect** is so far more relevant for neutrino physics (electrons couple to dipole moment -> produce pn pairs, do neutrinos couple the same?)
Pion Production

- **Pion-Nucleon-Delta dynamics** in nuclei well known since 30 years → in resonance region no room (and no need) for generator concepts such as formation times or zones that just add new parameters.

- **Transition currents** to resonances are still quite uncertain, Rein-Sehgal clearly is bad.

- **Vector formfactors** should be taken from em-physics, e.g. MAID analysis, Axial FFs from PCAC.
Coherent Pion Production

- **Coherent pion production**: not really part of a MC generator, since coherent process.

Nakamura, Sato and Lee (PRC81 (2010) 035502) have given (nearly) correct theory. Supersedes oversimplified earlier models, but nowhere used. **WHY???**
DIS

- DIS well constrained at high neutrino energies \((E > 40 \text{ GeV})\).

- Problematic: SIS region around a few GeV, Parameters and X-sections not well determined \((2p-2h\?, 2\pi\ldots)\). MINERVA data may help

- Problematic: Switch from resonance model to DIS, can affect pion yield, e.g., in T2K
Check: Pion Absorption

Pion potential essential, as well as Coulomb

Note: Pion absorption does not provide a sensitive test for fsi with nucleons
Check: pions in HARP

HARP small angle analysis
12 GeV protons

Curves: GiBUU

K. Gallmeister et al, NP A826 (2009)
Check: Pion DCE

Check: Pions in Nuclei

$\gamma \rightarrow \pi^0$ on Pb

Photons illuminate the whole nucleus, test various pion mean free paths

$\frac{d\sigma}{dp_{\pi}} / A [\mu b/MeV]$
Check: protons

Curves: GiBUU

Proton transparency

INT 12/2013
Nuclear Transparency as a function of Q^2 and c dependence for C and Fe.

The inner error bars are the statistical uncertainties and the outer ones are the systematic uncertainties.

CLAS Pion Production

FIG. 6. (Color online) Transparency, T_A, vs. Q^2 for 12C (left, top panel), 27Al (right, top), 63Cu (left, bottom) and 197Au (right, bottom). The dotted curves correspond to FSI with the full hadronic cross section and the dashed curves include the shadowing corrections. The dash-dotted curves correspond to the in-medium cross sections defined according to the Lund model formation time concept which includes the Q^2-dependent (pre)hadronic interactions, Eq. (5), for the transverse contribution. The solid curves describe the effect of time dilatation alone with the pedestal value in the effective cross section independent of Q^2. The dash-dash-dotted curve in the top left panel realises the CT effect both in the longitudinal and transverse channels. The experimental data are from Ref. [20].

FIG. 7. (Color online) Transparency, T_A, vs. Q^2 for 12C (left, top panel), 27Al (right, top), 63Cu (left, bottom) and 197Au (right, bottom). The formation time of (pre)pions in the laboratory is calculated using Eq. (3). The dash-dash-dotted curves realize the CT effect in both the longitudinal and transverse channels and dash-dotted curves in the transverse channel only. The dot-dot-dashed curves describe the CT effect in the longitudinal channel only. The experimental data are from Ref. [20].

Electrons as Benchmark for GiBUU

No free parameters!
no 2p-2h, contributes in dip region and under Δ

Rein-Sehgal does not work for electrons!
Why should it work for neutrinos?
HERMES@27 GeV and GiBUU
Airapetian et al.

Pions

\[^{2}\text{d}_{1} \]
\[^{4}\text{He}_{2} \]
\[^{20}\text{Ne}_{10} \]
\[^{84}\text{Kr}_{36} \]
\[^{131}\text{Xe}_{54} \]

no diffractive
JLAB@5, π^+: selected (ν, Q^2) bins

$Q^2 = 1.0 : \cdots : 1.25 \text{ GeV}^2$

$Q^2 = 1.85 : \cdots : 2.4 \text{ GeV}^2$

Data:
CLAS preliminary
(Brooks et al)
no error bars shown

Calculations:
not tuned !!!
no potentials

INT 12/2013
Electrons as Benchmark for GiBUU

No free parameters!
no 2p-2h, contributes
in dip region and under \(\Delta \)

O. Benhar, spectral fctn
Pion Production in SIS and DIS

many sources for \(E_\nu > 1 \text{ GeV} \)
Comparison with experiment only possible if all these sources are taken into account

INT 12/2013

Thanks to Ornella Palamara and her team
Energy reconstruction

- Have to identify QE as well as possible (0 π), then treat remaining uncertainty with energy migration matrix P

Event Rate:

$$\phi(E_{\nu}^{\text{rec}}) \sigma_{0\pi}(E_{\nu}^{\text{rec}})$$

$$= \int N(E_{\nu}^{\text{rec}}, E_{\nu}^{\text{true}}) dE_{\nu}^{\text{true}}$$

$$= \int \mathcal{P}(E_{\nu}^{\text{rec}} | E_{\nu}^{\text{true}}) \phi(E_{\nu}^{\text{true}}) \sigma_{0\pi}(E_{\nu}^{\text{true}}) dE_{\nu}^{\text{true}}$$

MM from one and the same generator
Oscillation Signal gets distorted due to mixing of reaction mechanisms

Oscillation signal in T2K
ν_μ disappearance

Two very different models give same result

How to proceed

- Generator is an important part of any experiment: at the end of a very sophisticated experiment you do not want to have someone with a 'crummy' code to mess up your data!

- Generator-Theory support must be integral part of any experiment and its funding!
Need for solid nuclear physics theory

Generators are a crucial part of any experiment. Must be of same quality as the experimental equipment itself! Needed resources are relatively small, but still not available.

"What we especially like about these theoretical types is that they don't tie up thousands of dollars worth of equipment." millions
Precision era requires better generators

1. The community needs NO further generator comparisons
 Instead: Time to not just compare generator results, but clarify origins of differences (e.g. pions)

2. Document theory content and codes of generators (no more black boxes, open code), evaluate generator-TDR as part of exp approval process
Precision era requires better generators

- Present generators have evolved into a patchwork of theories, recipes and fit parameters without any theoretical justification and loose predictive power.

- It is thus time to critically scrutinize existing generators, take the best parts from any of them, supplement them with consistent theory and build a \(\nu \)-Genie.
Guiding Principles for a new Generator

- **Consistency:**
e.g. same ground state for all subprocesses (negative example: combine free uniform Fermi gas with bound state local gas)

- **Detailed balance:**
example: $\Delta + N \rightarrow NN$ (pionless Delta decay) must be related to $N + N \rightarrow \Delta + N$ (negative example: just take out 20% Δs)

- **Relativity:**
generator collision criterion $\sigma = \pi d^2$
is incorrect (no Lorentz contraction)
Precision era requires better generators

What needs to be done? Theory

1. Develop consistent framework for many-body effects: spectral functions + couplings, consistent groundstates
2. Theory must comprise besides QE also pion and DIS region because all are entangled
3. Parametrize hadron tensors as function of relevant kinematical variables for use in generators
4. Consistency of inclusive and exclusive X-sections
5. Improve all important final state interactions
2 Final Words

1. A lively discussion scene between experiment and theory is still missing. Exp. papers seldomly quote theoretical work, and never discuss theoretical results in comparison with their data.

2. „We, as a community, would be well advised to share all relevant information and tools freely – instead of reinventing the wheel at every opportunity (see Nuance, GENIE, Neugen, NuWro . . .)“

P. Huber, NUFAC'T 2013
Need for solid nuclear physics theory

Generators are a crucial part of any experiment. Must be of same quality as the experimental equipment itself! Needed resources are relatively small, but still not available.

"What we especially like about these theoretical types is that they don't tie up thousands of dollars worth of equipment."

INT 12/2013
Importance of Generators

- A good generator does not have to fit the data, provided it is right.
- A good generator does not have to be right, provided it fits the data.
- Let us strive for a generator that is 'right' and as much state-of-the-art as the experimental equipment is!