Consistent treatment of one- and two-nucleon currents within the spectral function formalism

Omar Benhar

Center for Neutrino Physics, Virginia Tech. Blacksburg, VA 24061
INFN and Department of Physics, “Sapienza” Università di Roma. I-00185 Roma, Italy

INT Workshop on Neutrino-Nucleus Interactions
December 11, 2013
Preamble: the lepton-nucleus x-section

★ Double differential cross section

$$\frac{d\sigma_A}{d\Omega_{k'} dk'_0} \propto L_{\mu\nu} W^A_{\mu\nu}$$

★ $L_{\mu\nu}$ is fully specified by the lepton kinematical variables (warning: not all of them are known in the case of ν scattering)

★ The determination of the target response tensor

$$W^A_{\mu\nu} = \sum_N \langle 0 | J^A_{\mu} | N \rangle \langle N | J^A_{\nu} | 0 \rangle \delta^{(4)}(P_0 + k - P_N - k')$$

requires a consistent description of both the target initial and final states and the nuclear current. Approximations are needed in the kinematical regime in which relativistic effects are important.
Why worry about relativity

(Figure courtesy of A. Ankowsky)

★ Unlike the initial state, the nuclear current and the final hadronic state can not be described using non relativistic many-body theory

★ In neutrino experiments low- and large-\(|q|\) contributions to the observables are inextricably tangled
Response of uniform isospin symmetric nuclear matter to a scalar probe delivering momentum $|q| = 800$ MeV.

Calculation carried out using a realistic spectral function. Solid line: relativistic kinematics. Dashed line: non relativistic kinematics.
Enter the factorization *ansatz*

- At $|q|^{-1} \ll d \sim 1.2 \text{ fm}$ use the impulse approximation (IA)

\[
|q,\omega\rangle \sum_i^2 |q,\omega\rangle \sum_i^2 |q,\omega\rangle
\]

- neglect the contribution of the two-nucleon current

\[
J_{A}^{\mu}(q) \approx \sum_{i=1}^{A} f_{i}^{\mu}(q)
\]

- write the final state in the factorized form

\[
|N\rangle \rightarrow |p\rangle \otimes |n_{(A-1)}, p_{n}\rangle.
\]

- at zero-th order, neglect final state interactions (FSI) between the outgoing nucleon and the spectator particles
within the IA scheme the nuclear matrix element of the one-nucleon current reduces to

\[\langle N| j_i^\mu |0 \rangle = \int d^3k \, M_m(k) \langle p| j_i^\mu |k \rangle , \]

with

\[M_n(k) = \{ \langle n(A−1), p_n| \otimes \langle k| \} |0 \rangle . \]

The nuclear spectral function, yielding the probability of removing a nucleon of momentum \(k \) leaving the residual system with excitation energy \(E \), is defined as

\[P(k, E) \sum_n |M_n(k)|^2 \delta(E_0 + E − E_n) \]
IA results compared to electron scattering data

- **Nuclear x-section**
 \[d\sigma_A = \int d^3k dE \, d\sigma_N \, P(k, E) \]

- **QE (nucleon-only final states) only**

- **Correlation tail, arising from 2p2h final states, clearly visible**

- **Position and width of the peak are reproduced**
Enter the two-nucleon current

- Two-nucleon current contributions can be accurately computed within the non relativistic approximation, using the GFMC approach.

- Interference between one- and two-nucleon currents important.
Highly accurate and consistent calculations can only be carried out in the non relativistic regime.

Using fully relativistic MEC and a realistic description of the nuclear ground state, including correlations, requires the factorization *ansatz* underlying the IA.

- Rewrite the final state $|N\rangle$ in the factorized form

$$ |N\rangle \rightarrow |p, p'\rangle \otimes |n_{(A-2)}, p_n\rangle $$

$$ \langle N|j_{ij}^{\mu}|0\rangle \rightarrow \int d^3k d^3k' M_n(k, k') \langle pp'|j_{ij}^{\mu}|kk'\rangle $$

The amplitude

$$ M_n(k, k') = \langle n_{(A-2)}| \langle k, k'| \rangle \otimes |0\rangle $$

is independent of q and can be obtained from non relativistic many-body theory.
Two-nucleon spectral function

- Calculations have been carried out for uniform isospin-symmetric nuclear matter using CBF perturbation theory [PRC 62, 034304 (2000)]

\[P(k, k', E) = \sum_n |M_n(k, k')|^2 \delta(E + E_0 - E_n) \]

\[n(k, k') = \int dE \, P(k, k', E) \]

- Relative momentum distribution

\[n(Q) = 4\pi|Q|^2 \int d^3q \, n\left(\frac{Q}{2} + q, \frac{Q}{2} - q\right) \]

\[q = k + k', \quad Q = \frac{k - k'}{2} \]
Results of exact non relativistic calculations suggest that interference between one and two-nucleon current contributions to the excitation of 2p2h final states is important.

The spectral function formalism can be generalized to allow for a consistent treatment of processes involving one- and two- nucleon currents.

The implementation of this scheme in Monte Carlo generators does not involve conceptual difficulties.