Short-range correlations studied with unitarily transformed interactions and operators

Thomas Neff Hans Feldmeier Dennis Weber

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt

INT Workshop
Nuclear Structure and Dynamics at Short Distances
INT, University of Washington, Seattle, USA

February 11 - February 22, 2013
Motivation

Short-range correlations and high-momentum components in wave functions
Wiringa, Schiavilla, Pieper, Carlson, PRC 85, 021001(R) (2008)

Interaction dependence – AV18 versus N3LO

SRC, high-momenta and unitary transformations
Anderson, Bogner, Furnstahl, Perry, PRC 82, 054001 (2010)
Short-range and tensor correlations

- strong repulsive core: nucleons can not get closer than \(\approx 0.5 \text{ fm} \) → central correlations
- strong dependence on the orientation of the spins due to the tensor force → tensor correlations
- the nuclear force will induce strong short-range correlations in the nuclear wave function
One-body densities for $A=2,3,4$ nuclei

\[
\rho^{(1)}(r_1) = \langle \psi | \sum_{i=1}^{A} \delta^3(\hat{r}_i - r_1) | \psi \rangle
\]

\[
n^{(1)}(k_1) = \langle \psi | \sum_{i=1}^{A} \delta^3(\hat{k}_i - k_1) | \psi \rangle
\]

- one-body densities calculated from **exact wave functions** (Correlated Gaussian Method) for AV8' interaction
- coordinate space densities reflect different sizes and densities of 2H, 3H, 3He, 4He and the 0^+_2 state in 4He
- similar high-momentum tails in the one-body momentum distributions

Feldmeier, Horiuchi, Neff, Suzuki, PRC 84, 054003 (2011)
Definition: Two-body densities

of pairs in given spin-, isospin channels

\[\rho_{SM, TM}^{(2)}(r_1, r_2) = \langle \psi | \sum_{i<j} A \hat{p}_{ij}^{SM} \hat{p}_{ij}^{TM} \delta^3(\hat{r}_i - r_1) \delta^3(\hat{r}_j - r_2) | \psi \rangle \]

\[n_{SM, TM}^{(2)}(k_1, k_2) = \langle \psi | \sum_{i<j} A \hat{p}_{ij}^{SM} \hat{p}_{ij}^{TM} \delta^3(\hat{k}_i - k_1) \delta^3(\hat{k}_j - k_2) | \psi \rangle \]

integrated over center-of-mass position \(R = \frac{1}{2}(r_1 + r_2) \) or the total momentum of the nucleon pair \(K = k_1 + k_2 \) of the nucleon:

\[\rho_{SM, TM}^{\text{rel}}(r) = \langle \psi | \sum_{i<j} A \hat{p}_{ij}^{SM} \hat{p}_{ij}^{TM} \delta^3(\hat{r}_i - \hat{r}_j - r) | \psi \rangle \]

\[n_{SM, TM}^{\text{rel}}(k) = \langle \psi | \sum_{i<j} A \hat{p}_{ij}^{SM} \hat{p}_{ij}^{TM} \delta^3(\frac{1}{2}(\hat{k}_i - \hat{k}_j) - k) | \psi \rangle \]
Two-body densities in coordinate space for $A=2,3,4$

- two-body densities calculated from exact wave functions (Correlated Gaussian Method) for AV8' interaction
- coordinate space two-body densities reflect correlation hole and tensor correlations
 - → normalize two-body density in coordinate space at $r=1.0$ fm
 - → normalized two-body densities in coordinate space are identical at short distances for all nuclei
 - also true for angular dependence in the tensor channel
Two-body densities in momentum space for $A=2,3,4$

S=0,T=1

- use **normalization factors fixed in coordinate space**
- \rightarrow two-body densities in momentum space identical for very high momenta $k > 3\text{fm}^{-1}$
- moderate nucleus dependence in high momentum region $1.5\text{fm}^{-1} < k < 3\text{fm}^{-1}$

Feldmeier, Horiuchi, Neff, Suzuki, PRC **84**, 054003 (2011)
Two-body densities reflect many-body correlations

count the number of pairs in the (ST) channels.

<table>
<thead>
<tr>
<th>state \ (ST)</th>
<th>(10)</th>
<th>(01)</th>
<th>(11)</th>
<th>(00)</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>t</td>
<td>1.490</td>
<td>1.361</td>
<td>0.139</td>
<td>0.010</td>
</tr>
<tr>
<td>h</td>
<td>1.489</td>
<td>1.361</td>
<td>0.139</td>
<td>0.011</td>
</tr>
<tr>
<td>α</td>
<td>2.992</td>
<td>2.572</td>
<td>0.428</td>
<td>0.008</td>
</tr>
<tr>
<td>α*</td>
<td>2.966</td>
<td>2.714</td>
<td>0.286</td>
<td>0.034</td>
</tr>
</tbody>
</table>

- occupation in (ST)=(10) almost exactly as in IPM
- (ST)=(01) significantly depopulated in favor of (ST)=(11)
- three-body correlations induced by the two-body tensor force: depopulation of (ST)=(01) channel is the price one has to pay for getting the full binding from the tensor force
Unitary Correlation Operator Method

\[n_{S,T}^{rel}(r) \quad S = 1, M_S = 1, T = 0 \]

central correlator \(\hat{C}_r \) shifts density out of the repulsive core

tensor correlator \(\hat{C}_\Omega \) aligns density with spin orientation

both central and tensor correlations are essential for binding

Roth, Neff, Feldmeier, Prog. Part. Nucl. Phys. 65, 51 (2010)
Flow equation

\[\frac{d\hat{H}_\alpha}{d\alpha} = [\hat{\eta}_\alpha, \hat{H}_\alpha]__ \]

Unitary transformation of Hamiltonian and other operators

\[\hat{H}_\alpha = \hat{U}_\alpha^\dagger \hat{H} \hat{U}_\alpha, \quad \hat{B}_\alpha = \hat{U}_\alpha^\dagger \hat{B} \hat{U}_\alpha \]

Flow equation for \(\hat{U}_\alpha \)

\[\frac{d\hat{U}_\alpha}{d\alpha} = -\hat{U}_\alpha \hat{\eta}_\alpha \]

Metagenerator

\[\hat{\eta}_\alpha = (2\mu)^2 \left[\hat{\tau}_{\text{int}}, \hat{H}_\alpha \right]__ = 2\mu \left[\hat{K}^2, \hat{H}_\alpha \right]__ \]
simultaneous SRG evolution for transformed Hamiltonian and transformation matrix on the two-body level

\[
\frac{d\hat{H}_\alpha}{d\alpha} = \left[\hat{n}_\alpha, \hat{H}_\alpha \right]_-, \quad \frac{d\hat{U}_\alpha}{d\alpha} = -\hat{U}_\alpha \hat{n}_\alpha
\]

Solve many-body problem with SRG transformed Hamiltonian in the NCSM

\[
\hat{H}_\alpha |\psi_\alpha\rangle = E_\alpha |\psi_\alpha\rangle
\]

Calculate expectation values of “bare” and “effective” two-body density operators

\[
\rho_{\text{bare}} = \langle \psi_\alpha | \hat{\rho} | \psi_\alpha \rangle, \quad \rho_{\text{effective}} = \langle \psi_\alpha | \hat{U}_\alpha^\dagger \hat{\rho} \hat{U}_\alpha | \psi_\alpha \rangle
\]

→ Check for convergence of NCSM calculations and \(\alpha\)-dependence
Similarity Renormalization Group
Implementation Details

- SRG evolution for \hat{H}_α and \hat{U}_α in momentum space $k_{\text{max}} = 15\text{fm}^{-1}$
- Operators only depend on relative coordinates and not on the center-of-mass of the pairs
- (SRG transformed) momentum space matrix elements are expanded in HO basis
- jj-coupled matrix elements are calculated using the Talmi-Moshinski procedure
- a slight modification is needed if we look at the two-body densities also as a function of pair momentum
Similarity Renormalization Group
Hamiltonian Flow

$AV8'$

$N3LO$

$\alpha = 0.00$ (bare)
Similarity Renormalization Group

Hamiltonian Flow

\[\alpha = 0.01 \text{fm}^4 \]
Introduction

Unitary Transformations

4 He Results

4 He, 6 Li, 10 B, 12 C Results

Summary

Similarity Renormalization Group

Hamiltonian Flow

$\alpha = 0.04 \text{fm}^4$
Similarity Renormalization Group

Hamiltonian Flow

$AV8'$

$\alpha = 0.20\text{fm}^4$

$\text{SRG drives the Hamiltonian towards a band-diagonal structure}$
4 He Results

4 He advantages
- exact two-body densities available for AV8’ interaction
- “bare” N3LO can be converged in NCSM

Objectives
- Compare AV8’ and N3LO results
- Check for NCSM convergence
- Check flow dependence $\alpha = 0.01, 0.04, 0.20\text{fm}^4$ ($\Lambda = 3.16, 2.24, 1.50\text{fm}^{-1}$)
- Can we see many-body effects?
Convergence with the model space size

$AV8' - \alpha = 0.04\text{fm}^4$

Two-body Density in Coordinate Space

$\hbar \Omega = 20\text{MeV}$ corresponds to roughly the size of ^4He
Convergence with the model space size

$$\text{AV8'} - \alpha = 0.04 \text{fm}^4$$

Two-body Density in Coordinate Space

$\hbar \Omega = 20 \text{MeV}$ corresponds to roughly the size of ^4He
Convergence with the model space size

$\text{AV8'} - \alpha = 0.04\text{fm}^4$

Two-body Density in Coordinate Space

$\hbar\Omega = 20\text{MeV}$ corresponds to roughly the size of ^4He
Convergence with the model space size

\(AV8' - \alpha = 0.04 \text{fm}^4 \)

Two-body Density in Coordinate Space

\(\hbar \Omega = 20 \text{MeV} \) corresponds to roughly the size of \(^4\text{He}\)
Convergence with the model space size

$AV8' - \alpha = 0.04 \text{fm}^4$

Two-body Density in Coordinate Space

\[\bar{\rho}(r) = \frac{\rho(r)}{\rho(0)} \]

$\hbar\Omega = 20\text{MeV}$ corresponds to roughly the size of ^4He
Convergence with the model space size

\[AV8' - \alpha = 0.04 \text{fm}^4 \]

Two-body Density in Coordinate Space

\[\rho_{\text{rel}}(r) \text{ [fm}^{-3}] \]

\[\rho_{\text{eff}}(r) \text{ [fm}^{-3}] \]

\[r \text{ [fm]} \]

\[\hbar \Omega = 20 \text{MeV} \] corresponds to roughly the size of \(^4\text{He}\)
Convergence with the model space size

$AV8' - \alpha = 0.04\text{fm}^4$

Two-body Density in Coordinate Space

$\hbar\Omega = 20\text{MeV}$ corresponds to roughly the size of ^4He
Convergence with the model space size

\(AV8' - \alpha = 0.04 \text{fm}^4 \)

Two-body Density in Coordinate Space

\[\rho_{\text{rel}}(r) \text{ [fm}^{-3}] \]

- \(S=0, T=0 \)
- \(N=12 \)
- \(N=10 \)

\[\rho_{\text{eff}}(r) \text{ [fm}^{-3}] \]

- \(S=0, T=0 \)
- \(N=12 \)
- \(N=10 \)

\[\hbar \Omega = 20 \text{MeV} \] corresponds to roughly the size of \(^4\text{He} \)
Convergence with the model space size

AV8’ – \(\alpha = 0.04 \text{fm}^4 \)

Two-body Density in Coordinate Space

\[\rho_{\text{rel}}(r) \text{ [fm}^{-3}] \]

\(\rho_{\text{bare}}^{\text{op}} \) \(\times 100 \)

\(\rho_{\text{eff}}^{\text{op}} \) \(\times 100 \)

\(S=0,T=0 \)

\(N=14 \) \(\text{red} \)

\(N=12 \) \(\text{orange} \)

\(S=0,T=1 \)

\(N=14 \) \(\text{red} \)

\(N=12 \) \(\text{orange} \)

\(S=1,T=0 \)

\(N=14 \) \(\text{blue} \)

\(N=12 \) \(\text{dashed blue} \)

\(S=1,T=1 \)

\(N=14 \) \(\text{purple} \)

\(N=12 \) \(\text{dashed purple} \)

\[\hbar \Omega = 20 \text{MeV} \] corresponds to roughly the size of \(^4\text{He}\)
Convergence with the model space size
$AV8' - \alpha = 0.04\text{fm}^4$

Two-body Density in Coordinate Space

$\hbar \Omega = 20\text{MeV}$ corresponds to roughly the size of ^4He
Convergence with the model space size

\(AV8' - \alpha = 0.04 \text{fm}^4 \)

Two-body Density in Coordinate Space

\(\hbar \Omega = 20 \text{MeV} \) corresponds to roughly the size of \(^4\text{He} \)
Convergence with the model space size

$AV8' - \alpha = 0.04\text{fm}^4$

Two-body Density in Momentum Space

$\hbar\Omega = 20\text{MeV}$ corresponds to roughly the size of ^4He
Convergence with the model space size

$AV8' - \alpha = 0.04 \text{fm}^4$

Two-body Density in Momentum Space

\[\hbar \Omega = 20 \text{MeV} \] corresponds to roughly the size of ^4He
Convergence with the model space size

$AV^8' - \alpha = 0.04\text{fm}^4$

Two-body Density in Momentum Space

$\hbar\Omega = 20\text{MeV}$ corresponds to roughly the size of ^4He
Convergence with the model space size

$AV8' - \alpha = 0.04\text{fm}^4$

Two-body Density in Momentum Space

$\hbar\Omega = 20\text{MeV}$ corresponds to roughly the size of ^4He
Convergence with the model space size

$AV8' - \alpha = 0.04\text{fm}^4$

Two-body Density in Momentum Space

$\hbar\Omega = 20\text{MeV}$ corresponds to roughly the size of ^4He
Convergence with the model space size

$AV8' - \alpha = 0.04\text{fm}^4$

Two-body Density in Momentum Space

$\hbar\Omega = 20\text{MeV}$ corresponds to roughly the size of ^4He
Convergence with the model space size

$AV8' - \alpha = 0.04\text{fm}^4$

Two-body Density in Momentum Space

$\hbar\Omega = 20\text{MeV}$ corresponds to roughly the size of ^4He
Convergence with the model space size

$AV8' - \alpha = 0.04\text{fm}^4$

Two-body Density in Momentum Space

$\hbar\Omega = 20\text{MeV}$ corresponds to roughly the size of ^4He
Convergence with the model space size

\(\text{AV8'} - \alpha = 0.04 \text{fm}^4 \)

Two-body Density in Momentum Space

\[\hbar \Omega = 20 \text{MeV} \] corresponds to roughly the size of \(^4\text{He}\)
Convergence with the model space size

$AV8' - \alpha = 0.04 \text{fm}^4$

Two-body Density in Momentum Space

\(\hbar \Omega = 20 \text{MeV} \) corresponds to roughly the size of \(^4\text{He}\)
Convergence with the model space size

\[AV8' - \alpha = 0.04\text{fm}^4 \]

Two-body Density in Momentum Space

\[\bar{n}(k) \text{ [fm}^{-3}\text{]} \]

\hbar \Omega = 20\text{MeV} \text{ corresponds to roughly the size of } ^4\text{He}
Flow dependence

AV8’ Interaction

Two-body Density in Coordinate Space

- $\rho_{\text{rel}}^{\text{eff}}(r)$ in bare and effective densities
- $S=0, T=0$ vs $S=0, T=1$ vs $S=1, T=0$ vs $S=1, T=1$
- $\alpha=0.01$, $\alpha=0.04$, $\alpha=0.20$
- $\times 100$ vs $\times 10$
Flow dependence
AV8' Interaction

Two-body Density in Coordinate Space

\[\rho_{rel}(r) [\text{fm}^{-3}] \]

- **bare**: red
- **\(\alpha = 0.01 \)**: cyan
- **\(\alpha = 0.04 \)**: green
- **\(\alpha = 0.20 \)**: orange

\(S=0, T=0 \)

\(S=0, T=1 \)

\(S=1, T=0 \)

\(S=1, T=1 \)

\(\times 100 \)

\(\times 10 \)

strong \(\alpha \)-dependence
weak \(\alpha \)-dependence
Flow dependence
N3LO Interaction

Two-body Density in Coordinate Space

\[\rho^{rel}(r) \text{ [fm}^{-3}\text{]} \]

\[\rho^{eff}(r) \text{ [fm}^{-3}\text{]} \]

\(r \) [fm]

\(S=0, T=0 \)
- bare
- \(\alpha=0.01 \)
- \(\alpha=0.04 \)
- \(\alpha=0.20 \)

\(S=1, T=0 \)
- bare
- \(\alpha=0.01 \)
- \(\alpha=0.04 \)
- \(\alpha=0.20 \)

\(S=1, T=1 \)
- bare
- \(\alpha=0.01 \)
- \(\alpha=0.04 \)
- \(\alpha=0.20 \)
Two-body Density in Coordinate Space

- Bare density
 - $S=0, T=0$
 - $S=0, T=1$
 - $S=1, T=0$
 - $S=1, T=1$

- Effective density
 - $S=0, T=0$
 - $S=0, T=1$
 - $S=1, T=0$
 - $S=1, T=1$

- Parameters:
 - $\alpha = 0.01$
 - $\alpha = 0.04$
 - $\alpha = 0.20$

- Scale factors:
 - $\times 10$
 - $\times 100$

Weaker repulsive core
Flow dependence

AV8’ Interaction

Two-body Density in Momentum Space

- $S=0,T=0$
- $S=0,T=1$
- $S=1,T=0$
- $S=1,T=1$

- bare
- $\alpha=0.01$
- $\alpha=0.04$
- $\alpha=0.20$

$k [fm^{-1}]$

$\rho^{\text{el}}(k) [fm^3]$
Flow dependence
AV8' Interaction

Two-body Density in Momentum Space

α-dependence

strong α-dependence

weak α-dependence

strong α-dependence

S=0, T=0
bare
$\alpha=0.01$
$\alpha=0.04$
$\alpha=0.20$

S=0, T=1
bare
$\alpha=0.01$
$\alpha=0.04$
$\alpha=0.20$
Two-body Density in Momentum Space

$S=0, T=0$

bare

$\alpha=0.01$

$\alpha=0.04$

$\alpha=0.20$

$S=0, T=1$

bare

$\alpha=0.01$

$\alpha=0.04$

$\alpha=0.20$

$S=1, T=0$

bare

$\alpha=0.01$

$\alpha=0.04$

$\alpha=0.20$

$S=1, T=1$

bare

$\alpha=0.01$

$\alpha=0.04$

$\alpha=0.20$

$S=0, T=0$

bare

$\alpha=0.01$

$\alpha=0.04$

$\alpha=0.20$

$S=0, T=1$

bare

$\alpha=0.01$

$\alpha=0.04$

$\alpha=0.20$

$S=1, T=0$

bare

$\alpha=0.01$

$\alpha=0.04$

$\alpha=0.20$

$S=1, T=1$

bare

$\alpha=0.01$

$\alpha=0.04$

$\alpha=0.20$

$S=0, T=0$

bare

$\alpha=0.01$

$\alpha=0.04$

$\alpha=0.20$

$S=0, T=1$

bare

$\alpha=0.01$

$\alpha=0.04$

$\alpha=0.20$

$S=1, T=0$

bare

$\alpha=0.01$

$\alpha=0.04$

$\alpha=0.20$

$S=1, T=1$

bare

$\alpha=0.01$

$\alpha=0.04$

$\alpha=0.20$
Contributions from different angular momenta

N3LO Interaction

Two-body Density in Momentum Space $S = 1, T = 0$
Contributions from different angular momenta

N3LO Interaction

Two-body Density in Momentum Space $S = 1, T = 0$

$L = 2$ pairs dominate momentum distributions above the Fermi surface
Contributions from different angular momenta
N3LO Interaction

Two-body Density in Momentum Space $S = 0, T = 1$
Contributions from different angular momenta

N3LO Interaction

Two-body Density in Momentum Space $S = 0$, $T = 1$

$L = 0$ pairs dominate momentum distributions above the Fermi surface
Relative contributions of ST channels

AV8⁺

![Graphs showing relative contributions of ST channels for AV8⁺](image1)

N3LO

![Graphs showing relative contributions of ST channels for N3LO](image2)
Relative contributions of ST channels

AV8’

N3LO

strong α-dependence

pp-pairs depends on many-body correlations
Two-body Density in Momentum Space
Two-body Density in Momentum Space

- $S=0, T=0$
- $S=0, T=1$
- $S=1, T=0$
- $S=1, T=1$

Pair momentum ≈ 0

N3LO Interaction

- $n_{rel}^{\text{rel}}(\bm{k} \equiv \bm{0})$
- $n_{eff}^{\text{eff}}(\bm{k} \equiv \bm{0})$

Thomas Neff

INT 2013
Two-body Density in Momentum Space $S = 1, T = 0$
Two-body Density in Momentum Space $S = 0, T = 1$
Relative contributions of ST channels

N3LO interaction

all pair momenta

pair momenta ≈ 0

Thomas Neff

INT 2013
Relative contributions of ST channels

N3LO interaction

all pair momenta

pair momenta ≈ 0

α-dependence significantly weaker

Thomas Neff

INT 2013

Calculation

- “bare” AV18 and N3LO can not be converged
- NCSM convergence only for larger flow parameters

Objectives

- Compare AV18 and N3LO results
- Check for NCSM convergence
- Check flow dependence $\alpha = 0.04, 0.20\text{fm}^4$ ($\Lambda = 2.24, 1.50\text{fm}^{-1}$)
- What is different from ^4He?
AV18, $\alpha = 0.04\text{fm}^4$

Two-body Density in Momentum Space

4\text{He} (N=16)

$^6\text{Li} (N=12)$

$^{10}\text{B} (N=8)$

$^{12}\text{C} (N=8)$

$\rho^{\text{eff}}(k) [\text{fm}^3]$
AV18, $\alpha = 0.04 \text{fm}^4$

Two-body Density in Momentum Space

^4He Results

^6Li Results

^{10}B Results

^{12}C Results

^4He, ^6Li, ^{10}B, ^{12}C Results
AV18, \(\alpha = 0.20 \text{fm}^4 \)

Two-body Density in Momentum Space

- **\(^4\text{He} \)**: \(N=16 \)
 - Bare densities
 - Effective densities

- **\(^6\text{Li} \)**: \(N=12 \)
 - Bare densities
 - Effective densities

- **\(^{10}\text{B} \)**: \(N=8 \)
 - Bare densities
 - Effective densities

- **\(^{12}\text{C} \)**: \(N=8 \)
 - Bare densities
 - Effective densities

Thomas Neff

INT 2013
Two-body Density in Momentum Space

N3LO, $\alpha = 0.04\text{fm}^4$

Thomas Neff
INT 2013
N3LO, $\alpha = 0.20\text{fm}^4$

Two-body Density in Momentum Space

For ^4He, ^6Li, ^{10}B, and ^{12}C, the two-body density in momentum space is shown. The plots illustrate the density $n^0(k)$ and $n^{\text{eff}}(k)$ for different channels (pp, pn, nn) as a function of momentum k [fm$^{-1}$].
pp, pn, nn contributions

AV18

N3LO

Thomas Neff

INT 2013
pp, pn, nn contributions

AV18

4 He Results

\[
^4\text{He} H N = 16 \quad \begin{array}{lll}
\text{pp} & \text{pn} & \text{nn} \\
0 & 1 & 2 & 3 & 4 \\
0.0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0
\end{array}
\]

\[
^6\text{Li} H N = 12 \quad \begin{array}{lll}
\text{pp} & \text{pn} & \text{nn} \\
0 & 1 & 2 & 3 & 4 \\
0.0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0
\end{array}
\]

\[
^{10}\text{B} H N = 8 \quad \begin{array}{lll}
\text{pp} & \text{pn} & \text{nn} \\
0 & 1 & 2 & 3 & 4 \\
0.0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0
\end{array}
\]

\[
^{12}\text{C} H N = 8 \quad \begin{array}{lll}
\text{pp} & \text{pn} & \text{nn} \\
0 & 1 & 2 & 3 & 4 \\
0.0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0
\end{array}
\]

N3LO

\[
^4\text{He} H N = 16 \quad \begin{array}{lll}
\text{pp} & \text{pn} & \text{nn} \\
0 & 1 & 2 & 3 & 4 \\
0.0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0
\end{array}
\]

\[
^6\text{Li} H N = 12 \quad \begin{array}{lll}
\text{pp} & \text{pn} & \text{nn} \\
0 & 1 & 2 & 3 & 4 \\
0.0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0
\end{array}
\]

\[
^{10}\text{B} H N = 8 \quad \begin{array}{lll}
\text{pp} & \text{pn} & \text{nn} \\
0 & 1 & 2 & 3 & 4 \\
0.0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0
\end{array}
\]

\[
^{12}\text{C} H N = 8 \quad \begin{array}{lll}
\text{pp} & \text{pn} & \text{nn} \\
0 & 1 & 2 & 3 & 4 \\
0.0 & 0.2 & 0.4 & 0.6 & 0.8 & 1.0
\end{array}
\]

Thomas Neff

AV18 and N3LO results pretty similar
Summary

Similarity Renormalization Group
- SRG evolved Hamiltonian and transformation matrix
- “bare” and “effective” density operators

4He Two-body densities
- AV8’ and N3LO interactions
- short-range and high-momentum components described by effective operators
- high-momentum components above the Fermi momentum dominated by $L = 2$ pairs
- weak α-dependence in the $S = 1, T = 0$ channel
- strong α-dependence in the $S = 0, T = 1$ channel due to many-body correlations
- AV8’ and N3LO interaction results differ mainly in the $S = 0, T = 1$ channel due to different many-body correlations

4He, 6Li, 10B, 12C Two-body densities
- $T = 1$ pairs with $L = 1$ fill up the momentum distribution above the Fermi momentum
- less sensitivity to many-body correlations
- AV18 and N3LO provide very similar results