Microscopic Description of Induced Nuclear Fission: Static Aspects

INT Workshop on Large Amplitude Collective Motion
Sep. 24th, 2013

Nicolas Schunck
NNSA Needs

- Predictive model of nuclear fission
 - Use where experimental data is missing
 - High accuracy, high precision, known error bars
- Fission fragment properties
 - Charge and mass of all fragments
 - Coulomb repulsion between the fragments = the total kinetic energy (TKE)
 - Excitation energy (TXE)
- Fission fragment distributions
- Fission spectrum: pre-, post-scission neutrons, gammas, etc.
- Important constraint: quantitative evolution as function of incident neutron energy
Theoretical Approach

- Compound nucleus at given excitation energy
 - Separation between intrinsic and collective degrees of freedom
 - Collective variables describe, e.g., nuclear shape
 - Time evolution gives fragment distributions

- Requirements for a predictive theory
 - Use many-body methods of quantum mechanics
 - Build upon best knowledge of nuclear forces
 - Keep number of free parameters to strict minimum

- Nuclear density functional theory
 - Effective nuclear forces between protons and neutrons
 - Various levels of approximations
 - Time-dependent extensions exist
 - Suitable for large-scale applications
Posing the problem

Potential Energy

Collective wave-packet

Inner barrier

|φ(q_i)⟩

g.s.

Fission Isomer

|φ(q_j)⟩

Outer barrier

Scission point
Some Details

- **Basic Ingredients of nuclear DFT**
 - An effective interaction / energy functional: Skyrme, Gogny
 - Form of the functional guided by theory of nuclear forces
 - Challenge of determining unknown parameters
 - Identification of suitable collective variables
 - Number of collective variables drives the scale of the computational challenge
 - Optimal set of collective variables may change
 - Need to introduce a scission point
 - Account for excitation energy
 - Low-energy: Intrinsic-collective couplings
 - High-energy: Finite-temperature description

- **Fast and/or powerful DFT solvers**
 - Take advantage of leadership class computers
 - Computational nuclear structure
Highlight 1
Potential Energy Surfaces
Managing the Scale

- Testbench: $^{239}\text{Pu}(n,f)$
- Relevant collective variables: q_{20}, q_{22}, q_{30}, q_{40}
 - Triaxiality near ground-state and first barrier
 - Octupole and hexadecapole beyond first barrier

Elongation and triaxiality

Fission and fusion valleys

Mass asymmetry and “cluster radioactivity”
A Closer Look
Fission Barriers

- Calculations: J. McDonnell
- DFT methods better than semi-empirical models
- Small errors on fission barriers = orders of magnitude in lifetimes
Full Fission Pathways

![Graph showing energy vs. Q20 with different lines for UNEDF0, UNEDF1, and SkM*]
Triaxiality at Scission

- Local PES in the \((q_{20}, q_{22})\) plane around least-energy fission path
- Shallow axial valley:
 - Distributions of fission fragments will be different
 - Dissipation of energy in “transverse” modes
Highlight 2
Validation of Nuclear Density Functional Theory at Finite Temperature
Dealing with Excitation Energy

- **Question:** how to describe highly-excited compound nucleus?
- **Potential energy surfaces from finite-temperature DFT calculations**
 - System in thermal equilibrium
 - Ground-state is statistical superposition of pure quantum mechanical states
- **Attention:** at given $0 < T \lesssim 2.5$ MeV (or $0 < E^* \lesssim 100$ MeV excitation energy), **there is still a barrier!**
 - Temperature must be such that the system remains fissile
 - There is not a single good recipe here
Potential Energy Surface at T>0

Maxwell Relations of Thermodynamics

\[F(Q_{20}, T) = E(Q_{20}, S) \]
Evolution of Fission Barriers

![Fission Height vs Excitation Energy Graph]

- Inner Barrier (points)
- Outer Barrier (points)
- Inner Barrier (fit)
- Outer Barrier (fit)

^{240}Pu

Excitation Energy [MeV]

Fission Cross-section σ_f (barns)

1 barn = 10^{-28} m2
Highlight 3
Fission Fragment Properties at Finite Temperature
Approaching Scission

- Discontinuities: poor man's way to define scission
- Need to introduce another collective variable: Q_N
- Discontinuities \Rightarrow smooth pathway to scission

- Impact of Q_N of the order of 10 MeV on precission energy
- Where is scission?
Fragment Interaction Energy (T=0)

- After scission: independent fragments with nuclear interaction energy equal to 0: use as criterion for scission
- Disentangle the two fragments by unitary transformation of individual quasi-particles
- Does the method work at finite temperature?
Coupling to the Continuum

- Contribution to total density comes from localized and delocalized pieces at $T>0$
 \[\rho = V^* (1 - f) V^T + U^* f U^T \]

- Can we localize the fragments?
- Delocalized contribution negligible until $T \geq 1.5$ MeV ($E^* \sim 40 - 50$ MeV!)
- Localization should work
Fragment Interaction Energy (T>0)

- Localization works indeed
- At high temperatures, scission point moves to thicker necks: glass-like behavior
Conclusions

- Solving nuclear fission with microscopic methods and HPC capabilities
- Recent progress discussed in this talk
 - Mapping five-dimensional collective spaces including triaxiality
 - Assessing the sensitivity on the parametrization of the energy functional
 - Predicting evolution of fission barriers at finite temperature
 - Understanding the impact of finite temperature on fission fragment properties
- Open questions
 - Need better UQ to assess model dependence: model space (HO basis), parametrization of functionals, form of functionals, etc.
 - Dynamics of induced fission: dependence on scission point, on collective inertia
 - Finite-temperature caveats: statistical fluctuations, excitation energy of the fragments, collective mass
Collaborators

M. Kortelainen

W. Nazarewicz, J. Sheikh, M. Stoitsov

W. Younes, D. Gogny, J. McDonnell

J. Dobaczewski

A. Baran, A. Staszczak

H. A. Nam

J. Sarich, S. Wild, A. Knoll

D. Duke, H. Carr