THE SUMMATION METHOD FOR REACTOR ANTINEUTRINO FUNDAMENTAL AND APPLIED PHYSICS

M. Fallot

1 ERDRE group, SUBATECH (CNRS/IN2P3, Ecole des Mines de Nantes, Université de Nantes), 4, rue A. Kastler, 44307 Nantes cedex 3, France fallot@subatech.in2p3.fr

INT Seattle
Reactor Antineutrino Workshop
Outline

- Introduction
- Summation Method for Antineutrino Energy Spectrum
- On the Nuclear Data Side: Synergy with Decay Heat, Pandemonium Effect, Total Absorption Spectroscopy Technique
- New Reactor Antineutrino Spectra With the Summation Method
- Examples of Antineutrino Spectra for Innovative Fuels and Reactors
- Conclusions and Outlooks
Most of Fission Products (FP) are neutron-rich nuclei, undergoing β - decay

$$^{A}_{Z}X \rightarrow ^{A}_{Z+1}Y + e^- + \bar{\nu}_e$$

<table>
<thead>
<tr>
<th></th>
<th>^{235}U</th>
<th>^{239}Pu</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_i (MeV)</td>
<td>201.9</td>
<td>210.0</td>
</tr>
<tr>
<td>$<E_{\nu}>$ (MeV)</td>
<td>1.46</td>
<td>1.32</td>
</tr>
<tr>
<td>$<N_{\nu}>$ $(E>1.8\text{MeV})$</td>
<td>5.58 (1.92)</td>
<td>5.09 (1.45)</td>
</tr>
</tbody>
</table>
Most of Fission Products (FP) are neutron-rich nuclei, undergoing β - decay.

$$\frac{A}{Z} X \rightarrow \frac{A}{Z+1} Y + e^- + \bar{\nu}_e$$

\Rightarrow Power Reactors are copious antineutrino emitters \Rightarrow neutrino physics = oscillation parameter search: θ_{13}, search for sterile neutrinos (« reactor anomaly »)

\Rightarrow Use the discrepancy between antineutrino flux and energies from U and Pu isotopes to infer reactor fuel isotopic composition \Rightarrow reactor monitoring, non-proliferation and interest of the IAEA (see IAEA Report SG-EQGNRL-RP-0002 (2012).)
Reactor antineutrinos

- **Standard nuclear power plant 900 MWe:**

- **Usually detection through inverse-β process on quasi-free protons:**

 \[
 \bar{\nu}_e + p \rightarrow e^+ + n
 \]

 - Reaction threshold: \(1.8\ \text{MeV}\)
 - Cross section \((\alpha E_n^2)\): \(<\sigma> \sim 10^{-43}\text{cm}^2\)

- **2800 MW\text{th}/200 MeV \times 6 \bar{\nu}_e \sim 5 \cdot 10^{20} \bar{\nu}_e / \text{s}**

- **Observable \(\bar{\nu}\) Spectrum**

- **Prompt e\(^+\)**
 - \(E=1-8\ \text{MeV}\)

- **Delayed n capture**
 - Gd nuclei
 - \(\Sigma\gamma \sim 8\ \text{MeV}\)

- **Time correlation:** \(\tau \sim 30\mu\text{s}\)
- **Space correlation:** \(< 1\text{m}\)

[C. Bemporad et al., Rev. of Mod. Phys., 74 (2002)]
Reactor Antineutrino & Safeguards

✓ Direct relationship between antineutrino flux and energy with thermal power and fuel content (burnup) was proved experimentally by the neutrino experiments (Rovno, Bugey, Chooz...) and more recently by the dedicated SONGS experiment (LLNL)

Rovno experiment:

• Detector: 1m³ Gd-doped LS @ 18 m
• Reactor ~ 1.3 GWth
• Detection efficiency close to 50%
• Daily power monitoring and burnup:

✓ Several research axes worldwide:

- Applications of the antineutrinos: reactor simulations (future reactor designs, innovative fuels...)
- R&D of antineutrino detectors devoted to nuclear safeguards: US (SONGS, ...), Japan (Tohoku, Tokyo), Russia (DANSS), Brazil (ANGRA), Italy (CORMORAD), France (Nucifer), GB (MARS/SOLID), ...
- Improvement of our knowledge on the reactor antineutrino energy spectra: Link with Nuclear Data
- Synergy with neutron detection techniques
First meeting @ IAEA in 2003, with Agency members and neutrino physics experts

2010 : Symposium on International Safeguards: Preparing for Future Verification Challenges: Creation of an ad-hoc WG

Creation of a sub-WG devoted to antineutrino detection of the Novel technologies WG of the European Safeguards Research and Development Association (ESARDA) (http://esarda2.jrc.it/internal_activities/WG-NT-NA/index.html)

ESARDA NA/NT WG meeting: @35rd ESARDA meeting: May 2013, Belgium, Key words: antineutrino detection, R&D, compact detectors, PSD, actual and future reactors, simulations, proliferation scenarios, NUCLEAR DATA ...

Last ESARDA Meeting:
https://esarda.jrc.europa.eu/index.php?option=com_content&view=article&id=70&Itemid=238 and proceedings associated to the antineutrino detection in the NA/NT session;
First Double Chooz, Daya-Bay and Reno \(\theta_{13} \) results published in \textit{Phys. Rev. Lett.} in 2012!

\(\Rightarrow \) The Double Chooz experiment has devoted efforts to new computations of reactor antineutrino spectra

\(\Rightarrow \) Two methods were re-visited:

- One relying on the conversion of integral beta spectra of reference measured by Schreckenbach et al. in the 1980’s at the ILL reactor (thermal fission of \(^{235}\text{U}, ^{239}\text{Pu}\) and \(^{241}\text{Pu}\) integral beta spectra): use of nuclear data for realistic beta branches, \(Z \) distribution of the branches...

- The other being the summation method, summing all the contributions of the fission products in a reactor core: only nuclear data: Fission Yields + Beta Decay properties
Outline

- Introduction
- **Summation Method for Antineutrino Energy Spectrum**
 - On the Nuclear Data Side: Synergy with Decay Heat, Pandemonium Effect, Total Absorption Spectroscopy Technique
 - New Reactor Antineutrino Spectra With the Summation Method
 - Examples of Antineutrino Spectra for Innovative Fuels and Reactors
- Conclusions and Outlooks
Summation Method: Method based on individual fission product beta decay summation

\[
N(E_\nu) = \sum_n Y_n(Z,A,t) \cdot \sum_i b_{n,i}(E_0^i) P_\nu(E_\nu, E_0^i, Z)
\]

- \(Y_n(Z,A,t)\): Fissile mat. + FY neutron flux
- \(b_{n,i}(E_0^i)\): \(\beta^-\) decay rates \(Y_i(Z,A,t)\)
- \(P_\nu(E_\nu, E_0^i, Z)\): \(\nu_e\) and \(\beta^-\) energy spectra with possible complete error treatment + off-equilibrium effects
- \(\beta^-\) spectra database: TAGS, Rudstam et al., ENSDF, JEFF, JENDL, ...
- Core Simulation Evolution Code MURE
- \(n\) and \(i\): Indices
- \(S_{\nu,i}(Z,A,E_\nu)\): Core spectrum
- \(E_0^i\): Initial energy
- \(E_\nu\): Energy
- \(Z\) and \(A\): Atomic number and mass number
- \(t\): Time

Diagrams:
- Core geometry
- \(\beta^-\)-branch
- Models
The MURE* Code

- The MURE Code (MCNP Utility for Reactor Evolution):
 - C++ interface to the Monte Carlo code MCNP (static particle transport code)
 - Open source code available @ NEA: http://www.oecd-nea.org/tools/abstract/detail/nea-1845
 - Used for the 1st phase of the Double Chooz experiment

- Outputs provided: keff, neutron flux, inventory, reaction rates + adapted to compute antineutrino spectra

- Development of a complete core simulation with a follow up of core operating parameters
- Can be used also for simple geometries: ILL spectra computation

DChooz: Antineutrino flux and spectrum prediction

- Far detector data only
- No-Oscillation ⇒ reactor flux prediction via core simulations
- Normalisation to the Bugey-4 cross-section with far detector only

⇒ Reduced reactor systematics:

Full core simulations with the MURE code, with a follow-up of thermal power and boron concentration (>700h CPU for a complete cycle)

Numerical computation of the systematic error associated to the fission rates with MURE over the fuel cycle

⇒ Fractions of fissions per isotope $^{235}\text{U}=49.6\%$, $^{239}\text{Pu}=35.1\%$, $^{241}\text{Pu}=6.6\%$, and $^{238}\text{U}=8.7\%$ and the fission rate covariance matrix.

⇒ Resulting relative uncertainties on the above fission fractions are ±3.3%, ±4%, ±11.0% and ±6.5%

Total reactor error: 1.7%

Accurate reactor simulations keep the contribution of fission fraction uncertainties low
Ingredients to Build Beta and Antineutrino Spectra

- \(N_\beta (W) = K \ pW(W-W_0)^2 \ F(Z,W) L_0(Z,W) C(Z,W) S(Z,W) G_\beta (Z,W)(1+\delta_{WM}W) \)

Where \(W=E/m_e c^2 \), \(K = \) normalization constant,

\(pW(W-W_0)^2 = \) phase space, to be modified if forbidden transitions

\(F(Z,W) = \) „traditional” Fermi function

\(L_0(Z,W) \) and \(C(Z,W) = \) finite dimension terms (electromagnetic and weak interactions)

\(S(Z,W) = \) screening effect (of the Coulomb field of the daughter nucleus by the atomic electrons)

\(G_\beta (Z,W) = \) radiative corrections involving real and virtual photons

\(\delta_{WM} = \) weak magnetism term

The first results were published in Th.A. Mueller et al, Phys.Rev. C83(2011) 054615:

And only radiative corrections, coulomb and WM corrections were taken into account, following Vogel’s prescription

- **Summation method:** Energy conservation for conversion into antineutrino spectrum, for each beta branch of each fission product + realistic Z distribution of the fission products
« Summation » Method with the MURE* code

*MCNP Utility for Reactor Evolution:
- Computes the fission product distributions to couple with beta decay nuclear databases
- Computes off-equilibrium effects
- Prediction of any antineutrino energy spectrum for individual fissible nuclei or full reactor cores, for neutrino physics or non proliferation

But Pandemonium effect:
Overestimate of the reference spectra @ high energy + shape distortion
⇒ Requires new measurements of fission product beta decay properties

Assume a 10% error on the summation method spectra for all the bins, based on the discrepancy with ILL spectra \(\Rightarrow\) no complete error estimate yet

Assuming that summation method not yet precise enough, develop a mixed approach using nuclear databases + fictive branches to reproduce the ILL spectra

- Fit of residual: five effective branches are fitted to the remaining 10%
 \(\Rightarrow\) Suppresses error of full Summation Approach, if assumption that ILL data = only reference

- “true” distribution of all known \(\beta\)-branches describes >90% of ILL e data
 \(\Rightarrow\) reduces sensitivity to virtual branches approximations
Recent re-evaluations by
- P. Huber, Phys.Rev. C84 (2011) 024617

- Off-equilibrium corrections included
 (computed with MURE)

- Summation calculations, database comparisons and fission product distribution= new 238U prediction

Recent works defining new reference on the neutrino flux prediction for neutrino physics
NewlyConvertedspectra...

- ILL data = unique and precise reference => converted ν spectra = +3% normalization shift with respect to old ν spectra (>threshold), similar results for all isotopes (235U, 239Pu, 241Pu)

⇒ Origin of the bias identified:
- ILL conversion procedure (only virtual branches): 2 independent biases:
 - Low energy: correction to Fermi theory should be applied at branch level
 - High energy: mean Z fit is not accurate enough.

⇒ « Reactor anomaly »: all reactor neutrino experiments are below the prediction (G. Mention et al. Phys. Rev. D83, 073006 (2011)).
Sterile Neutrino hints?

- Reactor Anomaly:
 - converted ν spectra $\approx +3\%$ normalization shift with respect to old ν spectra, similar results for all isotopes (^{235}U, ^{239}Pu, ^{241}Pu)
 - Neutron life-time
 - Off-equilibrium effects

2 flavour simple scheme:

$$P_{\text{Osc}} = \sin^2 2\theta \sin^2 (1.27 \Delta m^2_{\text{[eV]}^2} L_{[m]}/E_{[\text{MeV}]})$$

- Light sterile neutrino state? could explain L=10-100m anomalies, $\Delta m^2 \approx 1 \text{ eV}^2$
 - candidate can’t interact via weak interaction: constrained by LEP result on 3 families

=> so can only exist in sterile form
An explanation of all hints in terms of oscillations suffers from severe tension between appearance and disappearance data. The best compatibility is obtained in the 1+3+1 scheme with a p-value of 0.2% and exceedingly worse compatibilities in the 3+1 and 3+2 schemes.

See T. Schwetz’s talk @ APC, 2013
Newly Converted spectra...

ILL data = unique and precise reference => converted ν spectra = +3% normalization shift with respect to old ν spectra (>threshold), similar results for all isotopes (235U, 239Pu, 241Pu)

⇒ Origin of the bias identified:

- ILL conversion procedure (only virtual branches): 2 independent biases:
 - Low energy: correction to Fermi theory should be applied at branch level
 - High energy: mean Z fit is not accurate enough.

⇒ « Reactor anomaly »: all reactor neutrino experiments are below the prediction (G. Mention et al. Phys. Rev. D83, 073006 (2011)).

⇒ Now looking for sterile neutrinos as a potential explanation to the reactor anomaly: Nucifer exp., + numerous projects: SOLiD (UK), STEREO (France), SCRAMM(US-Ca), Neutrino-4 (Russia), DANSS(Russia), + Mega-Curie sources in large ν detector... (white paper: K. N. Abazajian et al., http://arxiv.org/abs/1204.5379.)

⇒ Other explanations still possible: large uncertainty for Weak Magnetism term => could change normalization of spectra, or normalization of ILL data
Outline

- Introduction
- Summation Method for Antineutrino Energy Spectrum
- On the Nuclear Data Side: Synergy with Decay Heat, Pandemonium Effect, Total Absorption Spectroscopy Technique
- New Reactor Antineutrino Spectra With the Summation Method
- Examples of Antineutrino Spectra for Innovative Fuels and Reactors
- Conclusions and Outlooks
On the Nuclear Data side...

The reactor antineutrino estimate is not the only one to suffer from the Pandemonium Effect: Similar problem for Reactor Decay Heat (initiated by Yoshida et al. see Nuclear Science NEA/WPEC-25 (2007), Vol. 25)
⇒ TAS experiments
TAS Technique

Pandemonium effect**:

Due to the use of Ge detectors to measure the decay schemes: lower efficiency at higher energy

→ underestimate of β branches towards high energy excited states: overestimate of the high energy part of the FP β spectra

Solution: Total Absorption Spectroscopy (TAS)
Big cristal, 4π => A TAS is a calorimeter!

- 12 BaF₂ covering ~4π
- Detection efficiency ~ 80% @ 5 MeV
- Si detector for β

Picture from A. Algora

TAS MEASUREMENTS @ JYVÄSKYLÄ UNIV. (JYFL)

- IFIC of Valencia (J.L. Tain et A. Algora et al.)
 Reactor Decay Heat in 239Pu: Solving the γ Discrepancy in the 4-3000-s Cooling Period,

⇒ Taking into consideration the TAS data of the $^{102,104-107}$Tc, 105Mo, and 101Nb isotopes measured @ Jyväskylä
⇒ i.e. correcting 5 nuclei out of 7 for the Pandemonium effect

Impact of the results for 239Pu:
 electromagnetic component

Integral measurement of reference
Summation method calculations of the decay heat

Outline

- Introduction
- Summation Method for Antineutrino Energy Spectrum
- On the Nuclear Data Side: Synergy with Decay Heat, Pandemonium Effect, Total Absorption Spectroscopy Technique
- New Reactor Antineutrino Spectra With the Summation Method
- Examples of Antineutrino Spectra for Innovative Fuels and Reactors
- Conclusions and Outlooks
Back to the summation method for antineutrinos:

- the only one adapted to the computation of the antineutrino emission associated to various reactor designs (roadmap for IAEA);
- computation of antineutrino spectra for which no beta spectrum was measured;
- off-equilibrium effects
- different binnings etc... for reactor neutrino experiment analyses (DC, DB, ...)
- AND one of the only alternatives to ILL spectra !!!

⇒ Update of summation method spectra for ^{235}U, ^{239}Pu, ^{241}Pu and ^{238}U with the latest published TAS data
Summation Method: Ingredients

- \(N_\beta (W) = K \ pW(W-W_0)^2 \ F(Z,W)L_0(Z,W)C(Z,W)S(Z,W)G_\beta (Z,W)(1+\delta_{WM}W) \)

Where \(W=E/m_e c^2 \), \(K = \) normalization constant,

\(pW(W-W_0)^2 = \) phase space, to be modified if forbidden transitions

\(F(Z,W) = \) Fermi function

\(L_0(Z,W) \text{ and } C(Z,W) = \) finite dimension terms (electromagnetic and weak interactions)

\(S(Z,W) = \) screening effect

\(G_\beta (Z,W) = \) radiative corrections

\(\delta_{WM} = \) weak magnetism term (the most uncertain one ! Cf. P. Huber, could change the normalization of the spectra if very different value…)

- Using Huber’s prescriptions (formulae and values from PRC84,024617(2011)) + energy conservation for conversion into antineutrino spectrum, for each beta branch of each fission product

- Individual fission yields from the JEFF3.1 database are used
Summation Method: Ingredients

- In order to choose one specific nuclear decay database for one given nucleus, the order in which the bases are read is important: the first one in which the fission product is found is the chosen one:

The Greenwood TAS data set (29 nuclei), the experimental data measured by Tengblad et al. (85 nuclei), experimental data from the evaluated nuclear databases: JEFF3.1 (305, 345, 347, and 318 nuclei, respectively, for ^{235}U, ^{239}Pu, ^{241}Pu, and ^{238}U) and JENDL2000 (61, 62, 61, and 58 nuclei, respectively), Evaluated Nuclear Structure Data File nuclei (94, 106, 109, and 97 nuclei respectively), Gross theory spectra from JENDL (214, 215, 227, and 221 nuclei, respectively), and the "Q_β" approximation for the remaining unknown nuclei (22, 32, 38, and 33 nuclei, respectively).

⇒ 810, 874, 896 and 841 fission products taken into account respectively

- Irradiation times with MURE: 12 h for ^{235}U, 1.5 days for $^{239};^{241}Pu$, and 450 days for ^{238}U.

⇒ Taking into consideration the latest published TAS data of the $^{102};^{104–107}Tc$, ^{105}Mo, and ^{101}Nb isotopes (A. Algora et al. Phys. Rev. Lett. 105, 202501 (2010))?

⇒ i.e. correcting 5 nuclei out of 7 for the Pandemonium effect
Inclusion of the latest TAS data in the Antineutrino Summation Spectra:

Reconstructed antineutrino energy spectra, including the latest TAS data from Algora et al.

In the insets: ratios of the spectra to the ones computed by Huber PRC84,024617(2011) converted reference spectra from ILL β-spectra
Inclusion of the latest TAS data in the Antineutrino Summation Spectra:

Ratios of summation antineutrino spectra including the new TAS data for $^{102;104-107}\text{Tc}$, ^{105}Mo, and ^{101}Nb over the same spectra but with the JEFF3.1 data

- $^{239;241}\text{Pu}$ energy spectra: noticeable deviation from unity observed in the 0–6 MeV energy range reaching an 8% decrease.
- ^{238}U energy spectrum: effect reaches a value of 3.5% at 2.5–3 MeV.
- ^{235}U: 1.5% at 2.5–3.5 MeV, expected since these nuclei are a small contribution to the ^{235}U spectrum.

Inclusion of the latest TAS data in the Antineutrino Summation Spectra:

Ratios of summation antineutrino spectra including the new TAS data for $^{102-107}$Tc, 105Mo, and 101Nb over the same spectra but with the JEFF3.1 data

- $^{239;241}$Pu energy spectra: noticeable deviation from unity observed in the 0–6 MeV energy range reaching an 8% decrease.
- 238U energy spectrum: effect reaches a value of 3.5% at 2.5–3 MeV.
- 235U: 1.5% at 2.5–3.5 MeV, expected since these nuclei are a small contribution to the 235U spectrum.

⇒ Shows the important role of the Pandemonium nuclei in the $\bar{\nu}$ summation spectra
⇒ The summation spectra are among the only ways to estimate the antineutrino spectra independently from the still unique ILL integral β-spectra
⇒ New measurements required, list of nuclei identified
New measurements @JYFL (Jyväskylä, Finland)

- 7 nuclei have been already measured at JYFL of Jyväskylä (Finland), analysis is on-going (A. Algora et al. Proc. of the Int. Conf. ND2013): Br and Rb
- Motivations: Decay Heat, Reactor Antineutrinos, Nuclear Structure, Nuclear Astrophysics

PhD Thesis work:
- E. Valencia (IFIC-Valencia)
- S. Rice (University of Surrey)
- Z. Issoufou (SUBATECH-Nantes)

JYFL: Good selection of the measured nucleus needed → IGISOL* + Penning trap JYFLTRAP**

*J. Ärje et al., NIM A 247, 431 (1986)
**V. S. Kolhinen et al., NIM A 528, 776 (2004)
Among the future plans of the TAS collaboration related to Antineutrino Spectra:

Next experiments:

- Another 9 nuclei to be measured in Feb-March 2014 @ JYFL for antineutrinos, decay heat & Nuclear Structure (SUBATECH-IFIC proposal)

- Participation of the TAS collaboration to CHANDA Nuclear Data European Project, in the FP beta decay properties part ;

- Some nuclei of interest for antineutrinos are beta-n emitters: participation to the IAEA beta-n CRP: New experiments on Beta-n emitters will be proposed, of interest for neutrino physics, (& nuclear structure, reactor physics, nuclear astrophysics)

⇒ Next experiment proposal in preparation...
Outline

- Introduction
- Summation Method for Antineutrino Energy Spectrum
- On the Nuclear Data Side: Synergy with Decay Heat, Pandemonium Effect, Total Absorption Spectroscopy Technique
- New Reactor Antineutrino Spectra With the Summation Method
- Examples of Antineutrino Spectra required for Innovative Fuels and Reactors
- Conclusions and Outlooks
Reactors Modelling and Simulation

Determine feasibility of remote monitoring of various reactor designs and operations using an antineutrino detector:

- all parameters influencing the neutron energy distribution in the core may influence the antineutrino emission

⇒ Detailed reactor core model is required in order to get realistic results

⇒ Detailed study adapted to each design, dynamics vs core at equilibrium, uncertainties…

Method: choice of Monte-Carlo codes for their ability to: model complex geometry, continuous treatment of energy, thermal and fast neutron spectra... BUT memory limited.

MURE code: Monte-Carlo coupled to evolution code, and nuclear databases => summation method antineutrino energy spectra associated to reactor models
Scenarios and reactors of interest for IAEA?

- PWRs
- BWR, FBR, CANDU reactors
- Research reactor / isotope production reactors Pth >10MWth
- Future reactors (PBMRs, Gen IV reactors, ADS, especially reactors using carbide, nitride, metal or molten salt fuels, advanced CANDUs...)
- MOX Management, Innovative fuels
 - UOx, MOX, ThUOx, PuOx, thermal neutron spectrum
 - $^{238}\text{U}/^{239}\text{Pu}$ or $^{232}\text{Th}/^{233}\text{U}$ cycles, fast neutron spectrum
 - Minor Actinides, Protected Plutonium Production fuel...
Pebble Bed Reactor: Very High Temperature Reactor
Power of few 100s MWth
- Power generation
- Hydrogen production
- Desalination

Concept developed in South Africa with various changes
Demonstrators on operation in China and Japan

« Double heterogeneity » problem
stochastic distributions of CPs in pebbles \(^1\) and of pebbles in-core.

S. Cormon PhD thesis
http://tel.archives-ouvertes.fr/tel-00825082
Pebble Bed Reactor

PBR of 200MWth\(^{(1)}\)
359548 pebbles containing each 15000 Coated Particles

Fuels : UOx (enriched 8.2%), ThUOx, PuOx.

Antineutrino flux per pebble

Detected flux in a 1t liq. Gd-loaded scint. antineutrino detector, 50% det. Efficiency

30% discrepancy between UOx and ThUOx or PuOx fluxes

Na- Fast Breeder Reactor

1250MWth - refuelling every 180 days sodium-cooled
Inner core: 21% Pu, refuelled 1/3
Exterior core: 28% Pu, refuelled 1/3
Radial Blanket: MA, refuelled 1/8
Axial Blanket: MA, refuelled 1/3

Simul of reactor start-up and 8 first cycles

Reactor physics x-checks:
- effective transmutation of Minor Actinides
- delayed neutron fraction OK
Na-Fast Breeder Reactor

Several compositions of the blankets can be studied.

Example of Minor Actinides (MA) composition of the blankets.

Summation Method antineutrino spectra needed for this case: fast fission from all Pu isotopes, fast fission Minor Actinides, fast fission 235U, ...
Conclusions & Outlooks

- The ILL data are still the only and most precise measurements, considered as a reference in neutrino physics. Newly converted ν spectra => normalization shift w.r.t previous ν spectra => « reactor anomaly »

- Independent evaluations of the reactor spectra could provide new constraints on the existence of light sterile neutrinos. A possible alternative = spectra built with the summation method

- Pandemonium nuclei play a major role in the estimate of the antineutrino spectra using the summation method and TAS measurements of these nuclei could allow us to improve drastically the predictiveness of these spectra.

- Interest for Nuclear Data: new experiment planned in Feb.-March 2014 to measure another 9 nuclei selected for their importance in antineutrino energy spectra + synergy with decay heat, reactor physics, nuclear structure and astrophysics

- Interest for safeguards: ESARDA WG + IAEA Ad-Hoc WG;

- A substantial part of the nuclei at the origin of the antineutrinos are predicted by macroscopic models => need for microscopic model predictions + for comparisons with measurements
And the TAS Collaboration

J. Agramunt¹, A. Algora¹, J. Äystö⁴, M. Bowry³, V.M. Bui², R. Caballero-Folch⁶, D. Cano-Ott⁵, V. Eloma⁴, T. Eronen⁴, E. Estévez¹, M. Fallot², G. F. Farrelly³, A. Garcia⁵, W. Gelletly³, M. B. Gomez-Hornillos⁶, V. Gorlychev⁶, J. Hakala⁴, A. Jokinen⁴, M.D. Jordan⁷, A. Kankainen⁴, F.G. Kondev⁷, T. Martínez⁵, E. Mendoza⁵, F. Molina⁷, I. Moore⁴, A. Porta², A. Pérez¹, Zs. Podolyák³, H. Penttilä⁴, P. H. Regan³, S. Rice³, J. Rissanen⁴, B. Rubio¹, J.L. Tain¹, E. Valencia¹, C. Weber⁴ + IGISOL people

¹IFIC, CSIC - Univ. Valencia, Valencia, Spain.
²Subatech, CNRS/INP2P3, Nantes, EMN, Nantes, France.
³Univ. Surrey, Guildford, UK.
⁴IGISOL, Univ. Jyväskylä, Finland.
⁵CIEMAT, Madrid, Spain.
⁶Univ. Pol. Catalunya, Barcelona, Spain
⁷Nuclear Engineering Division, Argonne National Laboratory, Argonne, USA