Nuclear Forces and Few-Nucleons
Dynamics in Break-up Reactions

Sonia Bacca
TRIUMF Theory Group

INT program on “Nuclei and Fundamental Symmetries: Theory Needs of the Next-Decade Experiments”
August 6th, 2013
Motivations

- For few-nucleons one can perform exact calculations both for bound and scattering observables to test the nuclear theory on light nuclei and extend it to heavier mass number.

- Electroweak probes (coupling constant <<1)

 "With the electro-magnetic probe, we can immediately relate the cross section to the transition matrix element of the current operator, thus to the structure of the target itself."

 \[\sigma \propto |\langle \Psi_f | J^\mu | \Psi_0 \rangle|^2 \]

 [De Forest-Walecka, Ann. Phys. 1966]

- Provide important informations in other fields of physics, where nuclear physics plays a crucial role:
 - Astrophysics: γ interactions with nucleonic matter, radiative capture reactions, ν interactions with nucleonic matter (vector current as em)
 - Atomic physics (nuclear corrections to atomic levels, etc.)
 - Particle physics (neutrino experiments, ...)

Sonia Bacca
Photo-nuclear Reactions

Reactions resulting from the interaction of a photon with the nucleus

For photon energy 15-25 MeV stable nuclei across the periodic table show wide and large peak
Electromagnetic Reactions

Photo-nuclear Reactions

Reactions resulting from the interaction of a photon with the nucleus

For photon energy 15-25 MeV stable nuclei across the periodic table show wide and large peak

\[E_\gamma \text{ [MeV]} \]

\[\sigma_\gamma \text{ [mb]} \]

Ahrens et al.

Giant Dipole Resonance

Coulomb excitations

Inelastic scattering between two charged particles. Can use unstable nuclei as projectiles.

Neutron-rich nuclei show fragmented low-lying strength

\[\sigma_{\gamma,\alpha} \text{ (mb)} \]

Leistenschneider et al.

Can we give a microscopic explanation of these observations?

Sonia Bacca
Electromagnetic Reactions

Monopole Resonance in 4He

Electron scattering
interaction of a virtual photon with the nucleus

$E_x = 20.10(5)$ MeV
$\Gamma = 0.27(5)$ MeV

α - scattering
interaction of a virtual photon with the nucleus + strong interaction

$E_x = 20.29(2)$ MeV
$\Gamma = 0.89(4)$ MeV

Can we understand this difference? Can microscopic theories help?

Sonia Bacca
Ab-initio Theory Tools

High precision two-nucleon potentials:
well constraint on NN phase shifts

Three nucleon forces:
less known, constraint on A>2 observables

\[H \psi_i = E_i \psi_i \]
\[H = T + V_{NN} + V_{3N} + \ldots \]

Traditional Nuclear Physics
AV18+UIX, ..., J\(_2\)

Effective Field Theory
N\(^2\)LO, N\(^3\)LO ...

Exact Initial state & Final state in the continuum at different energies and for different A

\[\sigma \propto \left| \langle \Psi_f | J^\mu | \Psi_0 \rangle \right|^2 \]

two-body currents (or MEC) subnuclear d.o.f.

\[J^\mu = J^\mu_N + J^\mu_{NN} + \ldots \]

\[\nabla \cdot J = -i[V, \rho] \]

Sonia Bacca

Tuesday, 6 August, 13
Final State Interaction

Exact evaluation of the final state in the continuum is limited in energy and A

Solution: The Lorentz Integral Transform Method

Response in the continuum

$$R(\omega) = \sum_f \left| \left\langle \psi_f \, | \, J^\mu \, | \, \psi_0 \right\rangle \right|^2 \delta(E_f - E_0 - \omega)$$

$$L(\sigma, \Gamma) = \int d\omega \frac{R(\omega)}{(\omega - \sigma)^2 + \Gamma^2} = \langle \tilde{\psi} | \tilde{\psi} \rangle$$

$$(H - E_0 - \sigma + i\Gamma) | \tilde{\psi} \rangle = J^\mu | \psi_0 \rangle$$

- Due to imaginary part Γ the solution $| \tilde{\psi} \rangle$ is unique
- Since the r.h.s. is finite, then $| \tilde{\psi} \rangle$ has bound state asymptotic behavior

$L(\sigma, \Gamma)$ inversion $R(\omega)$ with the exact final state interaction

You can use any good bound state method! e.g. Hyperspherical Harmonics, No Core Shell Model, Coupled Cluster Theory

Sonia Bacca

Tuesday, 6 August, 13
Hyperspherical Harmonics

Starts from relative coordinates

\[|\psi(\vec{r}_1, \vec{r}_2, \ldots, \vec{r}_A)\rangle = |\varphi(\vec{R}_{CM})\psi(\vec{\eta}_1, \vec{\eta}_2, \ldots, \vec{\eta}_{A-1})\rangle \]

Recursive definition of hyper-spherical coordinates

\[\rho, \Omega \quad \rho^2 = \sum_{i=1}^{A} r_i^2 = \sum_{i=1}^{A-1} \eta_i^2 \]

Kinetic Energy

\[H_0(\rho, \Omega) = T_\rho - \frac{K^2(\Omega)}{\rho^2} \]

HH eigenstates of \(K^2 \)

- Use HH as a basis to expand the wf

\[\Psi = \sum_{[K], \nu} c_{[K]}^{[K]} e^{-\rho/2b} \rho^{n/2} L_n \left(\frac{\rho}{b} \right) \left[\mathcal{Y}_K(\Omega) \chi_{ST}^{\mu} \right]_T \]

- Model space truncation \(K \leq K_{\text{max}} \)

- Anstisymmetrization algorithm

The LIT with Hyperspherical Harmonics

Numerical example: Dipole Response Function of ^4He

$$J^\mu \rightarrow \hat{D}_z = \sum_i (z_i - Z_{\text{cm}})$$

with NN(N3LO)

Inversion of the LIT

Ansatz

$$R(\omega) = \sum_{i} c_i \chi_i(\omega, \alpha)$$

$$L(\sigma, \Gamma) = \sum_{i} c_i \mathcal{L}[\chi_i(\omega, \alpha)]$$

Least square fit of the coefficients c_i to reconstruct the response function
Applications
\[\gamma + ^4\text{He} \rightarrow X \]

Traditional Hamiltonian
\[PRL\ 96\ 112301\ (2006) \]

Hamiltonian from \(\chi\text{EFT} \)
\[S.\text{Quaglioni\ and\ P.\text{Navratil}}\ \ PLB\ 652\ (2007) \]

Realistic NN + phenomenological central 3NF
\[W.\text{Horiuchi\ et\ al.}\ PRC\ 85\ 054002\ (2012) \]

Moderate sensitivity to the Hamiltonian used; theory variation about 10% in peak
Theoretical precision is better than experimental error

More recent experimental activity seems to confirm higher data with peak around 27 MeV

Moderate sensitivity to the Hamiltonian used; theory variation about 10% in peak

Useful in Muonic Atoms arXiv:1307.6577

See talk by C.Ji

Sonia Bacca
\[R_L(\omega, q) = \sum_f |\langle \Psi_f | \rho(q) | \Psi_0 \rangle|^2 \delta \left(E_f - E_0 - \omega + \frac{q^2}{2M} \right) \]

Comparison with experiment improves with 3NF and at low q the reduction of the peak is up to 50%
Comparison with experiment improves with 3NF and at low q the reduction of the peak is up to 50%.

It is not a simple binding effect!

Stimulating new experiments:
- MAMI taken data q>150
- S-DALINAC can possibly take data at lower q

\[
R_L(\omega, q) = \sum_f |\langle \Psi_f | \rho(q) | \Psi_0 \rangle|^2 \delta \left(E_f - E_0 - \omega + \frac{q^2}{2M} \right)
\]

Two-body currents are not important.
Monopole Transition Form Factor

\[|F_M(q)|^2 = \frac{1}{Z^2} \int d\omega R_{\text{res}}^M(q, \omega) \]

First *ab-initio* calculation: Hiyama *et al.*, PRC 70 031001 (2004)
obtained good description of data with phenomenological central 3N

\[0_1^+ \longrightarrow 0_2^+ \]

\[(e,e') \]

\[4^\text{He}(e,e')0^+ \]

AV8' + central 3NF
\[E_0 = -28.44 \text{ MeV} \]
\[E_0^{\text{exp}} = -28.30 \text{ MeV} \]
First *ab-initio* calculation with realistic three-nucleon forces and with the Lorentz Integral Transform method.

\[
|F_M(q)|^2 = \frac{1}{Z^2} \int d\omega R_{\text{res}}(q, \omega)
\]

F.Cappuzzello: plan to measure \(F_M\) with \(\alpha\)-scattering in Catania.
The inelastic monopole resonance acts as a prism to nuclear Hamiltonians.

- AV8’ + central 3NF: $E_0 = -28.44$ MeV
- AV18+UIX: $E_0 = -28.40$ MeV
- NN(N^3LO)+3NF(N^2LO): $E_0 = -28.36$ MeV

$E_0^{exp} = -28.30$ MeV
Analysis of this result

Realistic three-nucleon forces do not reproduce the data for $|F_M|^2$. Particularly large difference are found with chiral EFT potentials. This is unexpected! What can be the source of this behaviour?

- **Numerics?** Our calculations are well converged (few % level) in the HH basis

<table>
<thead>
<tr>
<th>K_{max}</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10^4</td>
<td>F_M</td>
<td>^2$</td>
<td>4.59</td>
<td>4.75</td>
</tr>
</tbody>
</table>

- **Many-body charge operators?**

Conventional Nuclear Physics

Impulse approximation valid for elastic form factor below 2 fm$^{-1}$
Viviani *et al.*, PRL 99 (2007) 112002

EFT approach

Park *et al.*, Epelbaum, Koelling *et al.*, Pastore *et al.*: many-body operators appear at high order in EFT

- **Higher order 3NF (N^3LO)?** Unlikely...

- **Location of the resonance?**

AV8’ + central 3NF $E_R^* = 20.25$ MeV
AV18+UIX $E_R^* = 21.00(20)$ MeV
NN(N^3LO)+3NF(N^2LO) $E_R^* = 21.01(30)$ MeV $E_R^* = 20.21$ MeV
Extension to medium-mass nuclei

Develop new many-body methods that can extend the frontiers to heavier and neutron nuclei

Coupled Cluster Theory

CC future aims

CC theory now

- CC is optimal for closed shell nuclei ($\pm 1, \pm 2$)

Uses particle coordinates

$$|\psi_0(\vec{r}_1, \vec{r}_2, ..., \vec{r}_A)\rangle = e^T |\phi_0(\vec{r}_1, \vec{r}_2, ..., \vec{r}_A)\rangle$$

reference SD with any sp states

$$T = \sum T_{(A)} \quad \text{cluster expansion}$$

$$T_1 = \sum_{ia}^{t_a} a_i^\dagger a_i$$

$$T_2 = \frac{1}{4} \sum_{ij,ab}^{t_{ij}} a_i^\dagger a_j^\dagger a_j a_i$$

$$T_1 \quad T_2 \quad T_3$$

For the ground state energy

$$E_0 = \langle \phi_0 | e^{-T} H e^T | \phi_0 \rangle \quad \tilde{H} = e^{-T} H e^T$$

similarity transformed Hamiltonian

$$0 = \langle \phi_i^a | e^{-T} H e^T | \phi_0 \rangle$$

$$0 = \langle \phi_{ij}^{ab} | e^{-T} H e^T | \phi_0 \rangle$$

Leads to CCSD equations for the t-amplitudes
Extension to medium-mass nuclei

Develop new many-body methods that can extend the frontiers to heavier and neutron nuclei

Coupled Cluster Theory

- CC is optimal for closed shell nuclei ($\pm 1, \pm 2$)

Uses particle coordinates

\[\psi_0(\vec{r}_1, \vec{r}_2, ..., \vec{r}_A) = e^T \phi(\vec{r}_1, \vec{r}_2, ..., \vec{r}_A) \]

reference SD with any sp states

\[T = \sum T(A) \text{ cluster expansion} \]

CC is a very mature theory for g.s., see e.g.

What about electromagnetic reactions?

Sonia Bacca

Tuesday, 6 August, 13
New theoretical method aimed at extending \textit{ab-initio} calculations towards medium mass

\[
L(\sigma, \Gamma) = \int d\omega \frac{R(\omega)}{(\omega - \sigma)^2 + \Gamma^2} \langle \tilde{\Psi}_L | \tilde{\Psi}_R \rangle
\]

The LIT equation becomes EoM with \(z = E_0 + \sigma + i\Gamma \)

\[
[\hat{H}, \hat{R}(z^*)]|\Phi_0\rangle = (z^* - E_0)\hat{R}(z^*)|\Phi_0\rangle + \tilde{\Theta}|\Phi_0\rangle
\]

CCSD scheme

\[
\tilde{\Theta} = e^{-T} \Theta e^T
\]

\[
\hat{R} = \hat{R}_0 + \sum_{ia} \hat{R}_{ia} \hat{c}_a^\dagger \hat{c}_i + \frac{1}{4} \sum_{ijab} \hat{R}_{ijab} \hat{c}_a^\dagger \hat{c}_b^\dagger \hat{c}_j \hat{c}_i + \ldots
\]

Validation for \(^4\text{He} \)

Dipole Response Functions

with NN forces from \(\chi \text{EFT (N}^3\text{LO)} \)
New theoretical method aimed at extending *ab-initio* calculations towards medium mass

Extension to Dipole Response Function in ^{16}O with NN forces derived from χEFT (N3LO)

Convergence in the model space expansion

Good convergence!

Small HO dependence: use it as error bar

Sonia Bacca
New theoretical method aimed at extending *ab-initio* calculations towards medium mass

Extension to Dipole Response Function in 16O with NN forces derived from χEFT (N3LO)

Comparison to the experiment

![Graph showing comparison between LIT of data and CCSD results.](image)
New theoretical method aimed at extending ab-initio calculations towards medium mass

Extension to Dipole Response Function in 16O with NN forces derived from χEFT (N3LO)

Comparison to the experiment

The GDR of 16O is described from first principles for the first time!
Calcium isotopes with NN(N^3LO)

$h\Omega = 24 \text{ MeV}$

Sonia Bacca
Electric Dipole Polarizability

\[\alpha_E = \frac{1}{2\pi^2} \int_{\omega_{th}}^{\infty} d\omega \frac{\sigma_\gamma(\omega)}{\omega^2} \]

Phys. Rev. C 85, 041302 (2012) very correlated to the neutron-skin radius

Towards an ab-initio theory for 48Ca

48Ca α_E being measured at RCNP

48Ca parity violating electron scattering CREX

Future: study correlation $\alpha_E - r_{\text{skin}}$ with ab-initio methods
Conclusions and Outlook

- Electromagnetic break up reactions are very rich observables to test our understanding on nuclear forces.
- Interesting applications to other fields of physics (muonic atoms).
- Extending these calculations to medium mass nuclei is possible and very exciting, with hopefully more applications/impact on future experiments on fundamental symmetries.

Perspectives

- Dipole response function of neutron-rich Oxygen isotope.
- Other multipole excitation (quadrupole or monopole) of medium mass nuclei (need extension of LIT/CCSD to two-body operator).
- Add triples and three-nucleon forces.
Thanks to my collaborators

Nir Barnea, Doron Gazit

Gaute Hagen, Thomas Papenbrock

Winfried Leidemann, Giuseppina Orlandini

Chen Ji

Michael Descrochers

Javier Hernandez

Mirko Miorelli

Thank you!