Tail States and Collective Fluctuations in Wilson Dirac Spectra

Jacobus Verbaarschot
jacobus.verbaarschot@stonybrook.edu

Stony Brook University

INT Seattle, May 2013
Acknowledgments

Collaborators: Gernot Akemann (Brunel / NBIA)
Poul Damgaard (NBIA)
Mario Kieburg (Stony Brook)
Kim Splittorff (NBI)
Savvas Zafeiropoulos (Stony Brook)

M. Kieburg, K. Splittorff and J. J. M. Verbaarschot, to be published.
Contents

I. Introduction

II. Disordered Systems versus lattice QCD

III. Wilson Dirac Operator

IV. Tail States

V. Collective Fluctuations of Dirac Spectra

VI. Wilson Dirac Spectra

VII. Conclusions
I. Introduction

Compound Nucleus

S-matrix Fluctuations

Universal Conductance Fluctuations
The energy of the incoming neutron gets redistributed rapidly over the nucleons in the nucleus and it a long time before the energy is concentrated in a single neutron so that it can decay.
Compound Nucleus Scattering

Total cross section versus energy (in eV).

Garg-Rainwater-Petersen-Havens, 1964
S-matrix Fluctuations

- Distribution of the spacings of resonances with the same angular momentum and parity is given by Random Matrix Theory

\[P(S) \approx \frac{\pi}{2} \frac{S}{\langle S \rangle} e^{-\frac{\pi}{4} \frac{S^2}{\langle S \rangle^2}}. \]

- Stochastic \(S \)-matrix is given by

\[S_{ab} = \delta_{ab} - 2\pi iw_{a\mu} D_{\mu\nu}^{-1} w_{\nu b}, \quad D_{\mu\nu} = E\delta_{\mu\nu} + H_{\mu\nu}^{RMT} + \pi i \sum a w_{\mu a} w_{a\nu}. \]

Weidenmüller

- \(S_{ab} = \langle S_{ab} \rangle + S_{ab}^{fl} \)

- The cross section \(\langle |S_{ab}|^2 \rangle \) may be much larger than \(|\langle S_{ab} \rangle|^2 \).

Noise in Wilson Dirac Spectra – p. 8/?
S-matrix Fluctuations

\[
\langle S^{(CN \#)}_{ab} (E_1) (S^{(CN \#)}_{cd} (E_2))^* \rangle = \prod_{i=1}^{2} \int_{0}^{+\infty} d\lambda_i \int_{0}^{1} d\lambda \times \left\{ \frac{1}{8} \mu(\lambda_1, \lambda_2, \lambda) \exp \left\{ -\frac{i\pi \varepsilon}{d} (\lambda_1 + \lambda_2 + 2\lambda) \right\} \times \prod_{c} \frac{(1 - T_c \lambda)}{(1 + T_c \lambda_1)^{1/2}(1 + T_c \lambda_2)^{1/2}} \times J_{abcd}(\lambda_1, \lambda_2, \lambda) \right\}.
\]

(75)

The factor $\mu(\lambda_1, \lambda_2, \lambda)$ is an integration measure and given by

\[
\mu(\lambda_1, \lambda_2, \lambda) = \frac{(1 - \lambda)\lambda_1 \lambda_2}{\prod_{i=1}^{2} |(1 + \lambda_1 \lambda)|^{1/2}(\lambda_1 + \lambda_2)^2},
\]

(76)

while

\[
J_{abcd}(\lambda_1, \lambda_2, \lambda) = (\delta_{ac}\delta_{bd} + \delta_{ad}\delta_{bc})T_a T_b \\
\times \left(\sum_{i=1}^{2} \frac{\lambda_i(1 + \lambda)}{(1 + T_a \lambda_1)(1 + T_b \lambda_i) + \frac{2\lambda(1 - \lambda)}{(1 - T_a \lambda)(1 - T_b \lambda)}} \right)
\]

+ one more term.

Verbaarschot-Weidenmüller-Zirnbauer-1985

➢ S-matrix is unitary and has to be analytic and causal. Minimizing the information entropy determines the distribution, $P(S)$, of the S-matrix elements.

Mello-Pereyra-Seligman-1985

➢ It is an expression in terms of the transmission coefficients $T_a = 1 - |\langle S_{aa} \rangle|^2$.

Verbaarschot-Weidenmüller-Zirnbauer-1985

Universal Conductance Fluctuations

Conductivity is measured in a small gold ring in a magnetic field

\[\Delta G = \frac{e^2}{h} \]

RMT prediction: \[\text{var} \left(\frac{g}{g_0} \right) = \frac{1}{15} \]

Altshuler-1985, Lee-Stone-1985

Washburn-Webb-1986
II. Disordered Systems versus Lattice QCD

Comparison and Differences
Low Energy Effective Theory
Diffusive Motion and Thouless Energy
Disordered System versus lattice QCD

Disordered System

- Random potential + hopping matrix elements
- The lattice is physical and we have to add lattice effects to the continuum theory.

Lattice QCD

- Random Gauge Potential
- The lattice is unphysical and we have to subtract discretization effects from lattice QCD calculations.
Main Differences

<table>
<thead>
<tr>
<th>Disordered System</th>
<th>Lattice QCD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamiltonian</td>
<td>Euclidean Dirac operator</td>
</tr>
<tr>
<td>2 or 3 dimensional</td>
<td>4 dimensional</td>
</tr>
<tr>
<td>Quenched disorder</td>
<td>Dynamical quarks</td>
</tr>
<tr>
<td>Lattice is physical</td>
<td>Lattice is an artifact</td>
</tr>
<tr>
<td>Diffusion</td>
<td>Pion</td>
</tr>
<tr>
<td>Cooperon</td>
<td>Diquark</td>
</tr>
<tr>
<td>Time Reversal Symmetry</td>
<td>Broken Time Reversal Symmetry</td>
</tr>
</tbody>
</table>
Some More Differences

- The Dirac operator has a chiral symmetry, resulting in the block structure

\[
D = \begin{pmatrix}
0 & id \\
-id^\dagger & 0
\end{pmatrix}
\]

- Gauge fields have topology resulting in exact zero modes of the Dirac operator. The small quark masses they dominate the propagator

\[
\frac{1}{D + m}
\]
Low Energy Effective Theory

Disordered System

- Effective theory describing the diffusive motion of the electrons is a nonlinear σ model

$$\mathcal{L} = \frac{1}{8} D \text{Tr} \partial_k Q \partial_k Q - \frac{1}{4} i \omega \text{Tr}[\Lambda Q]$$

$$Q \in U(2n)/U(n) \times U(n).$$

- D is the diffusion constant.

QCD

- Long distance diffusion of quarks is described by the chiral Lagrangian of pions

$$\mathcal{L} = \frac{1}{4} F_\pi^2 \text{Tr} \partial_\mu U \partial_\mu U^\dagger - \text{Tr}[MU^\dagger + \Lambda]$$

$$U \in SU(N_f)$$

- For QCD in 3d we have that

$$U \in U(2N_f)/U(N_f) \times U(N_f).$$

- The pion decay constant, F_π^2, is the diffusion constant.
Diffusive Motion

\[\langle \Delta x^2 \rangle = D \Delta t. \]

Information on geometry is lost when \(\Delta x = L \). This corresponds to an energy scale

\[E_{Th} = \frac{\hbar}{\Delta t} = \frac{\hbar D}{L^2}. \]

This is the Thouless energy.

Disordered Systems

Lattice QCD

Ergodic domain: \(E \ll E_{Th} \)

\(\epsilon \)-domain: \(E \ll E_{Th} \)

Zero dimensional limit

Microscopic limit
Thouless Energy

- Eigenvalue spacing

\[\Delta \lambda = \frac{\Sigma}{V}. \]

- Thouless energy in units of the eigenvalues spacing

\[\frac{E_{th}}{\Delta \lambda} = \frac{\hbar D}{\Sigma L^{2-d}}. \]

- No separation of scales takes place for \(d = 2 \). The reason is the absence of spontaneous symmetry breaking and Goldstone bosons.
The ϵ Expansion

Expansion of the chiral Lagrangian with

$$p \sim \frac{1}{L}, \quad m \sim \frac{1}{V}, \quad \lambda = \frac{1}{V}, \quad a \sim \frac{1}{\sqrt{V}}.$$

To leading order the partition function factorizes into a zero momentum part and a nonzero momentum part.

The zero momentum part is equivalent to a random matrix theory with the same global symmetries.

The thermodynamic limit with mV, λV and $a^2 V$ fixed is known as the microscopic limit of QCD.

Although the physical quark mass is not in the microscopic domain, eigenvalues of the Dirac operator are in the microscopic domain.
It came as a surprise that the behavior of the smallest Dirac eigenvalues of a complicated nonlinear field theory can be obtained analytically.

Powerful RMT techniques can be used to evaluate many observables.

Chiral Random Matrix Theory has become a standard tool in lattice QCD.

Because of these success it has also been used as a successful (phenomenological) model, in particular for QCD at nonzero chemical potential and the sign problem.
III. Wilson Dirac Operator

- QCD Partition Function
- Chiral Condensate
- Dirac Operator
- Banks-Casher Relation
- Wilson Dirac Operator
QCD Partition Function

The QCD partition at temperature $1/\beta$ and chemical potential μ is given by

$$Z_{\text{QCD}} = \sum_k e^{-\beta(E_k - \mu)},$$

where the sum is over all states. At zero momentum the energy of the states is equal to the mass of the particles.

This partition function can be rewritten as a Euclidean quantum field theory

$$Z_{\text{QCD}} = \langle \det(D + m + \mu \gamma_0) \rangle_{\text{YM}}.$$
Dirac Operator

Chiral Block Structure

\[D = \begin{pmatrix} 0 & id \\ -id^\dagger & 0 \end{pmatrix}. \]

Eigenvalues are zero or occur in pairs \(\pm \lambda_k \).

\[Z_{\text{QCD}} = m^\nu \langle \prod_k (\lambda_k^2 + m^2) \rangle. \]
Chiral Condensate

Order parameter for the chiral phase transition

\[
\langle \frac{1}{V} \int d^4 x \bar{\psi} \psi \rangle = \frac{1}{V} \frac{d}{dm} \log Z(m)
\]

\[
= \frac{1}{V} \sum_k \langle \frac{1}{m + i\lambda_k} \rangle.
\]

Experimentally, \(\langle \bar{\psi} \psi \rangle = (-220 \text{MeV})^3 \).
The chiral condensate, $\Sigma(m)$, is given by the Banks-Casher formula

$$
\Sigma(m) = \lim_{V \to \infty} \left\langle \frac{1}{V} \sum_k \frac{1}{i\lambda_k + m} \right\rangle
$$

$$
\Delta \lambda \sim \frac{1}{V} = \lim_{V \to \infty} \frac{\pi \rho(0)}{V} \quad \text{for} \quad m \to 0
$$

The chiral condensate is the discontinuity of the resolvent for $V \to \infty$ when m crosses the imaginary axis. That is why we are interested in the behavior of the small eigenvalues.

The chiral condensate is the “electric field” in two dimensions at m of charges at $i\lambda_k$.

Eigenvalue spacing near zero: $\Delta \lambda = \frac{1}{\rho(0)} = \frac{\pi}{\Sigma V}$.
Note on Determinantal Theories

\[Z(m) = \langle \det(D + m) \rangle \]

- Partition function remains the same if we multiply \(D + m \) by an unimodular matrix.
- Chiral condensate: \(\Sigma(m) = \frac{1}{V} \frac{d}{dm} \log (Z(m)) \bigg|_{m=0} \).
- Eigenvalues are interesting if \(m \) is a multiple of the identity.
- For the Wilson Dirac operator we consider both \(D_W + m \) and \(D_5 \equiv \gamma_5(D + m) \).
- \(D_W \) is nonhermitian while \(D_5^\dagger = D_5 \).
Doubling Problem

Because the Dirac operator in linear in the derivatives we have the dispersion relation

$$E = \sin pa.$$

This results in an unwanted low energy mode.

Way out (Wilson 1974) : Add $a \nabla^2$ to the Dirac operator so that the modes at $p = \pi/a$ are lifted.

In agreement with the Nielsen-Ninomiya theorem this term violates the chiral symmetry of the Dirac operator.
Wilson Dirac operator:

\[D_W = \frac{1}{2} \gamma_\mu (\nabla_\mu + \nabla_\mu^*) - \frac{1}{2} a \nabla_\mu \nabla_\mu^*. \]

\[\{ D_W, \gamma_5 \} \neq 0 \]

\[D_W = \gamma_5 D_W^\dagger \gamma_5 \]

\[D_5 \equiv \gamma_5 (D_W + m) = D_5^\dagger \]

Block structure

\[D_W = \begin{pmatrix} aA & id \\ id^\dagger & aB \end{pmatrix} \]

with \(A^\dagger = A, \ B^\dagger = B. \)
IV. Tail States

Bogolubov Hamiltonian
Tail States
Determinantal Theories
Numerical Spectra
Bogolubov versus Wilson

Bogolubov Hamiltonian

\[H = \begin{pmatrix} S + i\alpha A & \Delta \\ \Delta & S - i\alpha A \end{pmatrix}. \]

Beloborodov-Narozhny-Aleiner-1999

- The time reversal invariance breaking term, \(i\alpha A \), results from magnetic impurities.

- Eigenvalues for \(\alpha = 0 \):
 \[\lambda_k = \pm \sqrt{s_k^2 + \Delta^2}. \]

Wilson Dirac Operator

\[D_5 = \begin{pmatrix} aA + m & d \\ d^\dagger & -aA - m \end{pmatrix}. \]

- The \(aA \) term is due to the Wilson term.

- Eigenvalues for \(a = 0 \):
 \[\lambda_k = \pm \sqrt{d_k^2 + m^2}. \]
Lattice Results for the Wilson Dirac Spectrum

Spectral density of a Bogoliubov Hamiltonian in the presence of magnetic impurities. Lamacraft-Simons-2001

Spectral density of $\gamma_5(D_W + m)$ on a 48×24^3 lattice. Lüscher-2007

- Dirac spectrum has a gap.
- A Gaussian tail intrudes inside the gap.
Bogolubov versus Wilson

Bogolubov Hamiltonian

\[\gamma_5 H = \begin{pmatrix} S + i\alpha A & \Delta \\ -\Delta & -S + i\alpha A \end{pmatrix} \]

Wilson Dirac Operator

\[D_W = \gamma_5 D_5 = \begin{pmatrix} aA + m & d \\ -d^\dagger & aA + m \end{pmatrix} \]

- In both cases the operator is pseudo-Hermitian, \(O^\dagger = \gamma_5 O \gamma_5 \).
- Eigenvalues occur in complex conjugate pairs.
Pseudo Hermitian Operators

\[H^\dagger \neq H \]

\[H^\dagger = \gamma_5 H \gamma_5 \]

- Two complex eigenvalues can collide and turn into a pair of real eigenvalues. The number of real eigenvalues does not change under small deformations of the operator.

- What is the distribution of the real pairs?

- What happens with the eigenvalues of the pseudo-hermitian Dirac operator when the gap closes?
Tail States

For \(|z - m|/a\) fixed for \(a \to 0\) the spectral density inside the gap can also be obtained from a saddle point analysis:

\[
\rho(z) \sim e^{-\Sigma^2 V (z-m)^2/16a^2 W_8} \quad \text{for} \quad 0 < z \ll m.
\]

The width parameter is given by

\[
\sigma^2 = \frac{8a^2 W_8}{V \Sigma^2}, \quad \frac{\sigma}{\Delta \lambda} = \frac{\sqrt{8}}{\pi} a \sqrt{W_8 V}.
\]

This is exactly the scaling behavior found by Del Debbio-et al-2006.

- Typical lattice parameters are \(mV \Sigma = 6\) and \(a \sqrt{W_8 V} = 0.2 - 0.5\).

- For \(mV \Sigma \gg 1\) and \(a^2 W_8 V \gg 1\) the distribution of the smallest eigenvalue is given by the Tracy-Widom distribution.

This behavior was also found for the Gorkov Hamiltonian with magnetic impurities. Lamacraft-Simons-2001, Vavilov-Brouwer-Ambegaokar-Beenakker-2000, Beloborodov-Narozhny-Aleiner-1999.
V. Collective Fluctuations of Dirac Spectra

Collective Fluctuation and Symmetries
Thouless Energy due to Collective Fluctuations
Wilson Chiral Lagrangian
Sign of Low Energy Constants
Collective Fluctuations and First Order Scenario
Microscopic versus Collective Spectral Fluctuations

- Microscopic fluctuations occur on the scale of the average eigenvalue spacing.
- Collective fluctuations occur on the scale of many eigenvalue spacing.
Thouless Energy due to Collective Fluctuations

- Spectral fluctuations on the scale of \sqrt{V} give rise to the Thouless energy.

- Which modes of the gauge field configuration is responsible for these spectral fluctuations?

- The fluctuations number of quasi zero modes of the Dirac operator scales with \sqrt{V} and induces fluctuation in the average spectral density of $\delta \rho / \langle \rho \rangle \sim 1/\sqrt{V}$. This gives rise to a Thouless energy with the correct scaling behavior.
Possible Collective Spectral Fluctuations

Collective fluctuations consistent with complex conjugation.

Is the positive definiteness of the Wilson term the source of these fluctuations? Kieburg-Splittorff-JV-2013
Chiral Lagrangian

Chiral Lagrangian for Wilson Fermions in the microscopic domains

\[-\mathcal{L} = \frac{1}{2} mV \sum \text{Tr}(U + U^\dagger) + \]
\[a^2 VW_6[\text{Tr}(U + U^\dagger)]^2 + a^2 VW_7[\text{Tr}(U - U^\dagger)]^2 - a^2 VW_8 \text{Tr}(U^2 + U^{-2}) \]

Nonlinear σ-model for Bogolubov Hamiltonian in the presence of magnetic impurities,

\[\mathcal{L} = -i\Delta V \text{Tr}\sigma_2 Q - \alpha^2 V \text{Tr}Q^2, \quad Q = \Sigma_3 Q_0 \quad \text{with} \quad Q_0 \in U(2n)/U(n) \times U(n) \]

Lamacraft-Simons-2001

Where are the trace squared terms?
Trace Squared Terms

- Single trace terms can be linearized at the expense of a Gaussian integral and then can be added to the mass term.

- This random mass can be interpreted in terms of collective fluctuations of Dirac eigenvalues.

- Collective spectral fluctuations must be consistent with the symmetries of the QCD Dirac operator.
Collective Eigenvalue Fluctuations and W_6

For $W_6 < 0$ we have

$$e^{-a^2V W_6 \text{Tr}^2(U+U^{-1})} \sim \int dy e^{-y^2/(16V|W_6|^2) - \frac{1}{2}y \text{Tr}(U+U^{-1})}$$

The partition function can be written as

$$Z(m; W_6, W_8) = \int dy e^{-y^2/16V|W_6|^2} Z(m - y; W_6 = 0, W_8)$$

$$= \int dy e^{-y^2/a^2V|W_6|^2} \langle \prod_k (m - y - \lambda_k) \rangle.$$

A negative W_6 therefore corresponds to collective fluctuations of the strip of eigenvalues.
Sign of W_6, W_7 and W_8

- A positive W_6 would correspond to collective eigenvalues fluctuations in the imaginary direction which are forbidden because of the complex conjugation property. This implies that $W_6 < 0$.

 Akemann-Damgaard-Splittorff-JV-2010, Kieburg-Splittorff-JV-2012

- A similar argument can be made for W_7. This results in a random mass term $\gamma_5 y$ and the requirement that $W_7 < 0$.

- The positivity of $W_8 - W_6 - W_7$ follows from pseudo-Hermiticity of the Wilson Dirac operator.

 Akemann-Damgaard-Splittorff-JV-2011, Hansen-Sharpe-2011
Collective Fluctuations in Terms of D_5

Spectrum of D_5
A phase transition takes place when the gap closes. In QCD we enter the Aoki phase while for the Bogolubov Hamiltonian superconductivity ceases to exist.

The transition to the Aoki phase is continuous.

Sharpe and Singleton proposed another possibility that results in a first order phase transition.

How can we understand the first order behavior in terms of collective fluctuations of Dirac eigenvalues?
In the first order scenario the effective potential for the chiral condensate has only two minima. A nonzero quark mass slightly tilts the potential and the condensate jumps from one minimum to the other. There is no flat direction and the pion mass does not vanish for vanishing quark mass. Sharpe-Singleton

Effective potential for the chiral condensate in the continuum limit. The chiral condensate rotates the direction of the quark mass. Because of the flat direction the pion mass vanishes for vanishing quark mass

\[m_\pi \sim \sqrt{m}. \]

In the Aoki phase the direction of the chiral condensate is realigned by discretization effects.
First Order Scenario and Dirac Spectra

How can we understand a first order scenario in terms of Dirac spectra?

Banks-Casher Relation

\[\Sigma(m) = \lim_{V \to \infty} \frac{1}{V} \sum_{k} \frac{2m}{\lambda_k^2 + m^2} \]

Mass Dependence of the Chiral Condensate in a First Order Scenario (green) and for the Aoki phase (red).
Because the Wilson Dirac operator is neither Hermitian nor anti-Hermitian, its eigenvalues can move.

Because of the fermion determinant, they will be repelled from the quark mass.

The finite jump of the Dirac spectrum results in a first order phase transition.

The fuzzy string of eigenvalues is repelled from the mass, m, which results in a first order phase transition.
Predictions

- Pion mass

Sharpe-Singleton, Münster

\[m^2 = \frac{2|m|\Sigma - 16(W_8 + 2W_6)a^2}{F^2} \]

When \(W_8 + 2W_6 < 0 \) we have a minimum pion mass. This has been observed in lattice simulations with twisted mass fermions. Jansen-etal-2005

The minimum pion mass is \(O(a) \).

- The first order scenario has only been observed for dynamical Wilson quarks, whereas the Aoki phase has been found both in the quenched case and in the case with dynamical Wilson quarks.
Signs of Low-Energy Constants

- $W_8 > 0$ independent of the value of W_6 and W_7.
 Akemmann-Damgaard-Splittorf-JV-2010, Hansen-Sharpe-2011

- Positivity of the QCD partition function requires that
 $W_8 - W_6 - W_7 > 0$.

- Interpretation in terms of eigenvalue fluctuations requires that
 $W_6 < 0$, $W_7 < 0$.

- For twisted mass Wilson fermions lattice simulations find that
 $m_{0PS} < m_{\pm PS}$ and chiral perturbation theory tells us
 Münster-2004, Sharpe-Wu-2004

\[
\frac{m_{0PS}^2 - m_{\pm PS}^2}{F_\pi^2} = \frac{16a^2(W_8 + 2W_6)}{F_\pi^2}.
\]
A consistent picture emerges if

\[W_8 > 0, \quad W_6 < 0, \quad W_7 < 0, \]
\[W_8 + 2W_6 < 0. \]

Kieburg-Splittorff-JV-2012, Hansen-Sharpe-2011
VI. Wilson Dirac Spectra

Random Matrix Theory for Wilson Dirac Spectra
Exact Results
Monte Carlo Simulations
Sign of Low Energy Constants
Collective Fluctuations and First Order Scenario
Observables in the small α -limit
Random Matrix Theory for the Wilson Dirac Operator

Since the chiral Lagrangian is determined uniquely by symmetries, in the microscopic domain it also can be obtained from a random matrix theory with the same symmetries. In the sector of index ν the random matrix partition function is given by

$$Z_{N_f}^\nu = \int dAdBdW \ det^{N_f} (D_W + m + z\gamma_5) \ P(D_W),$$

with

$$D_W = \begin{pmatrix} aA & C + aD \\ -C^\dagger + aD^\dagger & aB \end{pmatrix}.$$

and $A^\dagger = A$, $B^\dagger = B$.

where A is a square matrix of size $n \times n$, and B is a square matrix of size $(n + \nu) \times (n + \nu)$. The matrices C and D are complex $n \times (n + \nu)$ matrices.

Damgaard-Splittorff-JV-2010
The index of the D_W defined by spectral flow is equal to ν.

Universality: the properties of this random matrix theory do not depend on the details of $P(D_W)$.

In the microscopic domain, the Random Matrix Theory partition function reduces to the (twisted mass) chiral Lagrangian introduced before with $W_8 > 0$ and $W_6 = W_7 = 0$.

The presence of a D term does not change the chiral Lagrangian. Such term simplifies random matrix calculations.

The advantage of a random matrix formulations is that we can use powerful random matrix methods to calculate spectral observables. Kieburg-Zafeiropoulos-JV-2011, Akemann-Nagao-2011
Exact Results

Exact results have been derived for four different observables:

- The eigenvalue density of D_5.

- The density of the complex eigenvalues of D_W.
 Kieburg-JV-Zafeiropoulos-2011

- The density of the real eigenvalues of D_W.
 Kieburg-JV-Zafeiropoulos-2011

- The distribution of the chiralities over the real eigenvalues of D_W.
 Damgaard-Splittorff-JV-2010, Splittorff-JV-2011

Analytical results have been derived from a supersymmetric chiral Lagrangian as well as from Wilson Random Matrix Theory.
The microscopic spectrum of $\gamma_5(DW + m)$ for $\nu = 0$ (left) and $\nu = 1$ (right).

The red curve represents the analytical result for the resolvent.

$$G^\nu(m, z; a) = \frac{1}{16a^2 \pi} \int \frac{dsdt}{t - is} e^{-[(s + iz)^2 + (t - z)^2]/16a^2} \frac{(m - is)^\nu}{(m - t)^\nu} \tilde{Z}_1^{\nu}(\sqrt{m^2 + s^2}, \sqrt{m^2 - t^2}; a)$$

where

$$\tilde{Z}_1^{\nu}(x, y; a = 0) = \frac{y^\nu}{x^\nu} [yK_{\nu+1}(y)I_\nu(x) + xK_\nu(y)I_{\nu+1}(x)].$$
More Quenched Lattice Dirac Spectra at fixed ν

The spectrum of the Hermitian Wilson Dirac operator for $\nu = 0$ (top) and $\nu = 1$ (bottom). The blue curve is the WRMT result with $W_8 \neq 0$ and $W_6 = W_7 = 0$ while for the red curve they are nonzero.

Deuzeman-Wenger-Wuilloud-2011
Additional number real modes of the Wilson Dirac operator. In the left figure we show the analytical result compared to random matrix simulations (Kieburg-JV-Zafeiropoulos-2011) and in the right figure we show lattice result of (Deuzeman-Wenger-Wuilloud-2011) for two different lattice spacings. The lattice data are consistent with a logarithmic a -dependence.
The density of the projection of the eigenvalues of D_W on the imaginary axis. According to the Banks-Casher formula we have
\[
\Delta \lambda = \frac{\pi}{\Sigma V}.
\]

The average number of the additional real modes for $\nu = 0$:
\[
N_{\text{add}}^{\nu=0} \overset{a \ll 1}{=} 2V a^2 (W_8 - 2W_7).
\]

The width of the Gaussian shaped strip of complex eigenvalues:
\[
\frac{\sigma^2}{(\Delta \lambda)^2} \overset{a \ll 1}{=} \frac{4}{\pi^2} a^2 V (W_8 - 2W_6),
\]
Observables in the small α Limit

The variance of the distribution of chirality over the real eigenvalues:

$$\langle \left(\frac{x}{\Delta \lambda} \right)^2 \rangle_{\rho_x} \lesssim 1 \quad \frac{8}{\pi^2} V a^2 (\nu W_8 - W_6 - W_7), \ \nu > 0.$$

There are linear dependencies between the relations. This results in the consistency condition

$$\frac{\langle \tilde{x}^2 \rangle_{\nu=1}}{\Delta \lambda^2} = \frac{\sigma^2}{\Delta \lambda^2} + \frac{2}{\pi^2} N_{\text{add}} = 0.$$

Kieburg-JV-Zafeiropoulos
VI. Conclusions

We have seen a close analogy between tail states due to magnetic impurities and tail states due to nonzero lattice spacing.
VI. Conclusions

- We have seen a close analogy between tail states due to magnetic impurities and tail states due to nonzero lattice spacing.
- Collective spectral fluctuations limit the domain of validity of random matrix theory.
VI. Conclusions

- We have seen a close analogy between tail states due to magnetic impurities and tail states due to nonzero lattice spacing.

- Collective spectral fluctuations limit the domain of validity of random matrix theory.

- Collective spectral fluctuations drive the first order phase transition for Wilson fermions.
VI. Conclusions

► We have seen a close analogy between tail states due to magnetic impurities and tail states due to nonzero lattice spacing.

► Collective spectral fluctuations limit the domain of validity of random matrix theory.

► Collective spectral fluctuations drive the first order phase transition for Wilson fermions.

► We have constructed a random matrix theory that reproduces the chiral Lagrangian for the Wilson Dirac operator in the microscopic domain.
Which modes of the gauge field configuration are responsible for the Thouless energy?

What is the effect of trace squared terms in disordered superconductors?

What is the source of the collective spectral fluctuations of the Wilson Dirac operator?

What are the effects of nonzero lattice spacing on disordered superconductors?