Ridges at low and high transverse momentum:

Jets, bulk, and their interactions

Klaus Werner <werner@subatech.in2p3.fr>

in collaboration with

Iu. Karpenko, T. Pierog, S. Porteboeuf, M. Bleicher, K. Mikhailov
Motivation: Dihadron correlations: PbPb 2.76 TeV

\[4 < p_t^{\text{trigg}} < 6 \text{ GeV/c}, \quad 2 < p_t^{\text{assoc}} < 4 \text{ GeV/c} \]
Ridge for small trigger pt:

- irregular initial energy density in transverse plane
- + little variation longitudinally (flux tubes)
- translates into long range flow correlation

Ridge at higher pt ???

- One observes “factorization” of $v_n(p_t^t, p_t^a)$ in certain cases,
- which does not explain the phenomenon.

\Rightarrow some new ideas about bulk, jets, and their interaction
Basis: Multiple scattering approach (EPOS): marriage of pQCD and Gribov-Regge, with energy sharing

Many collisions in parallel

Single scattering

= hard elementary scattering including IS + FS radiation

= parton ladder

= color flux tubes
parton ladder = color flux tubes = kinky strings

here no IS radiation, only hard process producing two gluons
which expand and break
via the production of quark-antiquark pairs
(Schwinger mechanism)

String segment = hadron. Close to “kink”: jets
Check: jet production in pp at 7 TeV

![Graph showing jet production in pp at 7 TeV with the legend: dotted: data ATLAS, solid: calculation.](image)
Comparison with parton model calculation using CTEQ PDFs for pp at 7 TeV
Heavy ion collisions
or high energy & high multiplicity pp events:

- the usual procedure has to be modified, since the density of strings will be so high that they cannot possibly decay independently.

Some string pieces will constitute bulk matter, others show up as jets (jet-bulk separation).

These are the same strings (all originating from hard processes at LHC) which constitute BOTH jets and bulk!!
again: single scattering \Rightarrow 2 color flux tubes
... two scatterings \Rightarrow 4 color flux tubes
... many scatterings (AA) \Rightarrow many color flux tubes

\Rightarrow matter + escaping pieces (jets)
Consider one flux tube in "matter"
(= high density of other flux tubes, which then thermalize)

Three possibilities:

(A) String segments which have not sufficient energy to escape will constitute matter ($\Delta E > E$).
They lose their character as individual strings. This matter will evolve hydrodynamically and hadronize; hadrons still interact ("soft hadrons").

(B) String segments having sufficient energy to escape and being formed outside the matter, constitute jets ("jet-hadrons").

(C) String segments produced inside matter or at the surface, but having enough energy to escape and show up as jets ("jet-hadrons").
They are affected by the flowing matter ("fluid-jet interaction").
Jet-hadrons produced inside matter or at the surface

(Type C)

End point partons from fluid, instead of Schwinger

⇒ adds flow, changes chemistry
Technical realization in two steps

Estimate initially which segments constitute the bulk (= initial condition for hydro), from

\[\Delta E > E \]

\(E = \) energy of the segment,
\(\Delta E = \) energy loss along trajectory, with
\[dE \propto \rho^{3/8} \max(1, \sqrt{E/E_0})dL \]

\(^1\) inspired by BDMPS, Peigne arXiv0806.0242

After hydro evolution:

Reconstruct for the ”jet segments” produced inside the matter (formation time) their escape points \((t, \vec{x})\),

replace Schwinger q/qbar by thermal ones, “flowing” with \(\vec{v}(t, \vec{x})\).
Crucial: formation time!

Probability to form a hadron inside matter:

Simple estimate (ptl moving $\parallel \vec{b}$)

$$P_{\text{inside}} = 1 - \exp \left(-\frac{(r_{\text{Pb}} - b/2) m}{p_t \tau_{\text{form}}} \right).$$

with $c\tau_{\text{form}} = 1 \text{ fm}$, $mc^2 = 1 \text{ GeV}$,
Using ideal hydro
v2 20-30% too big

(standard param setting:
flux tube radii 0.2 fm)

mimic viscous effects
by taking artificially large val-
ues of the flux tube radii
(we take 1 fm),

⇒ smoother initial condi-
tions.
The heavy ion results shown are based on 2000000 events simulated with EPOS2.17v3.

A central (0-5%) PbPb event takes on the average around 2 HS06 hours CPU time (15 minutes on the machines of our computing farm).

Difficult to make “tuning”, results are based on a “good guess of parameters” ...
Transverse momentum dependence of particle yields

Pion, kaons, protons vs pt, in PbPb 2.76 GeV:

0-5%

20-30%

40-50%

blue dashed lines: calculation without hadronic cascade,
red solid lines: full calculation
green points: data ALICE
Hadronic cascade important! HC=UrQMD

Ratio of charged particle spectra: full model / calculation without HC

“1 - ratio” compared to P_{inside}
Charged particle R_{AA}

R_{AA}

PbPb 2.76 TeV 0-5% charged

Incompatible with PID results

$\frac{dn}{dp_t dy}$ (c/GeV)

π^-, K^-, p^- PbPb 2.76 TeV 0-5%

Data ALICE
PbPb 2.76 TeV 0-5% charged

bulk (hydro) / all

ratio of pt spectra

p_t (GeV/c)

0 2 4 6 8 10
Dihadron correlations: ridges at high pt

(0-5% PbPb)

\[\begin{align*}
\Delta \phi & \quad \Delta \eta \\
-1 & \quad -1 \\
1 & \quad 1 \\
\end{align*} \]

\[\begin{align*}
p_T^{\text{assoc}} & \in 2-2.5 \text{ GeV/c} \\
p_T^{\text{trigg}} & \in 5.5-8.0 \text{ GeV/c} \\
\end{align*} \]
Freeze-out surface of fluid
Cuts at two different z-values (P and P')
Same triangular shape and flow on P and P’
gives soft-jet correlation
also strong jet-soft correlation for peripheral events

(40-50% PbPb)
\[R(\Delta \phi) = \frac{1}{2(B - A)} \int_{A<|\Delta \eta|<B} R(\Delta \eta, \Delta \phi) \, d\Delta \eta \]

\[R(\Delta \phi) = 1 + \sum_{n=1}^{5} 2V_{n\Delta} \cos(n\Delta \phi) \]
40-50% PbPb

\[p_t^{\text{assoc}} \in 0.25-0.5 \text{ GeV/c} \]

\[p_t^{\text{assoc}} \in 1.0-1.5 \text{ GeV/c} \]

around 3 GeV/c: transition from soft-soft to soft-jet correlation
0-10% PbPb

\[p_t^{\text{assoc}} \in 0.25-0.5 \text{ GeV/c} \]

\[p_t^{\text{assoc}} \in 1.0-1.5 \text{ GeV/c} \]
\[n_2 = \langle \cos[2(\phi - \phi_{\text{Ref}})] \rangle \]

\[\phi_{\text{Ref}} = \phi_{\text{opposite hemisphere}} = \frac{1}{2} \tan^{-1} \frac{\langle \sin 2\phi \rangle}{\langle \cos 2\phi \rangle} \]
Tails again formation time driven:

\[V_2 \]

\[p_t (\text{GeV/c}) \]

VERY long tails

50-60%
Interesting: Picture works up to peripheral collisions

60–70% : $ = 12.5$ fm

$r_{WS} = 6.5$ fm

overlap like in pp!!
v2 scaling ????
PbPb 2.76 TeV 40-50\%

π, p

data ALICE

high pt data 30-40%
\[v_2 \{2, |\Delta\eta| > 1 \} \]

PbPb 2.76TeV 40-50%

\(\pi \ p \ K \Sigma \)

data ALICE
high pt data 30-40%

\(p_t \) (GeV/c)
What about Lambda / kaon ratio??

One of the key observables at intermediate p_t
We get for free:
Lambda/kaon ratio, PbPb at 2.76 TeV

 size - formation time effect
intermediate pt particles are produced in the fluid
and carry plasma properties like flow, increased strangeness and diquark rate
Summary

- We present a framework for treating bulk, jets, and their interaction.

- Jet-soft and fluid-jet interactions (jet = hadrons) affect particle productions VERY STRONGLY between 0 and 20 GeV/c (even up to 50 GeV/c). Parton energy loss dominant beyond.

- Reasonable quantitative description of yields, flow harmonics, dihadron correlations with small and large trigger pt, pion, proton v2, lambda/ K ratio

Summary

- We present a framework for treating bulk, jets, and their interaction.

- Jet-soft and fluid-jet interactions (jet = hadrons) affect particle productions VERY STRONGLY between 0 and 20 GeV/c (even up to 50 GeV/c). Parton energy loss dominant beyond.

- Reasonable quantitative description of yields, flow harmonics, dihadron correlations with small and large trigger pt, pion,proton v2, lambda/ K ratio

Thank you !!