Tri-Alpha structures in 12C

Henry R. Weller
Duke University and Triangle Universities Nuclear Laboratory

HIγS PROGRAM

Light Nuclei from First Principles-
INT- 2012
Development of an aneutronic Fusion Reactor Based upon the $^{11}\text{B} (p,\alpha)\alpha\alpha$ reaction

Tri-Alpha Energy, Inc. - Foothills Ranch, Ca.

Controlled fusion in a field reversed configuration and direct energy conversion.

(US patent: 7459654)

The $^{11}\text{B} (p,\alpha)\alpha\alpha$ reaction at low energies is dominated by the 2- $T=1$ resonance at 675 keV which has a width of 300 keV ($\Gamma_p = 150$ keV, $\Gamma_{\alpha_1} = 150$ keV).

The Q-value of the reaction is 8.58 MeV ($E_{\text{in}} (\text{cm}) \times 14$).

Light Nuclei from First Principles - INT- 2012
The $^{11}\text{B} \, (p,\alpha)\alpha\alpha$ reaction

When 675 keV protons strike ^{11}B, a resonance in ^{12}C is formed at 16.6 MeV having a width of 300 keV.

This resonance decays by emitting a primary α–particle, leading to the first excited state of ^{8}Be which is 3 MeV above the ground state. This state decays into two secondary α-particles. $\sigma(\alpha_1) = 600 \, \text{mb}$!

The state-of-the-art understanding of this reaction came from a 1987 study which “proved” that the reaction yielded one high energy primary α-particle, and two low energy secondary ones.
We have proven that this is incorrect!

But first—a few words on the concepts which underlie the aneutronic fusion reactor presently being developed at Tri-Alpha, Inc.
Magnetic Field map of the Field Reversed Configuration

FIG. 2
Annular layer of plasma rotates around the null surface (86). Collisions between injected p’s and ^{11}B create “high energy” alpha particles. Relative energy of protons to ^{11}B is about 600 keV.
The direct energy conversion system utilizes an Inverse Cyclotron Converter (ICC). D’s are replaced by four semi-cylindrical electrodes. Energy is removed from the alphas as they spiral past the electrodes connected to a resonant circuit.

FIG. 19B

FIG. 19C
The design of a 100 MW reactor is underway. Test “shots” to demonstrate plasma confinement are in progress.
Brief History of the $^{11}\text{B} (p,\alpha)\alpha\alpha$ reaction

The history of this reaction is almost as long as the history of nuclear physics itself.

Lord Rutherford studied the reaction over 75 years ago at ~200 keV at the Cavendish Laboratory, measuring the ranges of particles coming from the target. In his 1933 Proceedings of the Royal Society paper he states:

“we might anticipate that the most probable mode of disintegration would be for the three α-particles to escape symmetrically with equal energies”.

(Proc. Roy. Soc. Lond. A 141, 259 (1933).
Three years later (1936), Dee and Gilbert, also of the Cavendish, published the results of their expansion chamber studies of the $^{11}\text{B} \ (p, \alpha)\alpha\alpha$ reaction. Their 300 keV studies led them to conclude:

“the common mode of disintegration is into two [alpha] particles which proceed at angles of 150° to 180° relatively to one another, the third particle receiving very little energy”

The track images shown in their paper strongly support this interpretation.

(Proc. Royal Soc. Lond. A 154, 279 (1936).)
This photo shows the typical mode of disintegration of boron into three α-particles. A and B are emitted in nearly opposite directions while the third α-particle C receives very little energy and barely emerges beyond the beam of scattered protons.
Brief History

Fast forward to 1987. Of course many experimental and theoretical works were performed in the interim. But the work of Becker, Rolfs and Trautvetter (Z. Phys. A327, 341 (1987)) established the modern view of this reaction:

“The reaction mechanisms have been studied via kinematically complete coincidence measurements showing that the reaction proceeds predominantly by a sequential decay via 8Be”
Primary and secondary distributions from Becker et al. The two are about equal, leading to the factor of “2” in determining the cross section.

\[E_p = 300 \text{ keV} \]
\[\Theta_{\text{lab}} = 40^\circ \]
The $^{11}\text{B}(p,\alpha)\alpha\alpha$ reaction

“We want to know the energy and location of every outgoing alpha particle” Tri-Alpha Energy Inc.
Results of measuring the α-yields as a function of incident proton and outgoing α-energies.

Previous results of Becker et al. indicated that only two alphas were observed in finite detectors. We find 3. NACRE assumed 2 in its Astrophysical S-factor compilation for this reaction. (This needs correcting)

As will be shown later, the number of alphas is a function of both the proton energy and the alpha energy.

To avoid this issue, we plot Counts instead of cross section, normalized to the integrated luminosity and solid angle. Cross sections can be obtained by dividing by the expected number of alpha particles, but the absolute number of α’s is what is important to Tri-Alpha.
Results showing the dominant 0.675 MeV resonance.
Use experimental $\alpha-\alpha$ phase shifts to generate the resonance line shape of 8Be (2+). A pure single level assumption allows correction for potential scattering using hard-sphere phase shifts.

$$\delta_2 = -\phi_2 + \tan^{-1}\left(\frac{\Gamma/2}{E_R + \Delta_R - E}\right)$$

The second term is what we are after. ϕ_2 is the “hard-sphere” phase shift... easily calculated.

This avoids having to compute the energy dependence of Γ and Δ. It all comes from the experimentally determined values of the elastic scattering nuclear phase shifts δ_2.

Light Nuclei from First Principles- INT- 2012
Weight this with the probability that the α escapes from the 2$^-$ resonance in the ^{12}C nucleus (the penetrability for l=1 (or 3) alpha particles) to get the probability distribution for populating the $^{8}\text{Be}^*$ first excited state which subsequently decays into two secondary α particles having equal energies in the $^{8}\text{Be}^*$ frame.

Randomly distribute the primary and secondary α's in the center-of-mass frame while preserving proper kinematics and boosts back to the lab frame.
Angular distributions

We need to know the form of the angular distribution of both the primary alphas, and of the secondary ones wrt. to the axis defined by the primary alphas.

These can be calculated using the Z_{bar} formalism of Blatt and Biedenharn.
For the 2- state at 0.675 MeV

For the 2- (un-natural parity) state at 0.675 MeV, we have $l=0$ and $l'=1$ (according to Becker et al.). This immediately leads to an isotropic angular distribution for outgoing α’s, as observed experimentally.

The distribution of the secondary α’s wrt. the internal primary axis is found to be $\sigma(\theta) = 1 - P_2(\cos\theta)$, which is proportional to $\sin^2\theta$.

This is when the fun begins!
Failure of the two-step model at the 2- resonance at 0.675 MeV ($\Gamma = 300$ keV).
What went wrong?

When the 2^- resonance in ^{12}C decays to the first excited 2^+ state of ^{8}Be, the primary α-particle can have orbital angular momentum of 1 or 3 units.

The 1987 work assumed the value of 1. We tried 3!
To change to $l=3$ outgoing primary alpha particles requires two changes in our simulation

1. Replace the $l=1$ penetrabilities by $l=3$ ones when generating the line shape of the 8Be 2^+ state.

2. Use the angular distribution for the secondary alpha particles when the primary alphas have $l=3$.

This is obtained by considering

$$(S = 2^- + l=3 \rightarrow 2^+ \rightarrow S' = 0 + l'=2)$$

From $Z_{\text{bar}}(3232;2L) \ Z_{\text{bar}}(2222;0L) \ P_L(\cos \theta)$

We obtain: $$\sigma(\theta) = C \ [1.0 + 2/7 \ P_2(\cos \theta) - 9/7 \ P_4(\cos \theta)]$$
Which looks like:
The effect of the $l=3$ penetrability on the resonance line shape: a much narrower peak! (down from 1.5 to ~0.7 MeV!!!)
Success of the two step model with l=3 primary alpha particles
And the angular distribution remains isotropic as observed.
What can additional experiments tell us?

We performed a coincidence experiment using position sensitive solid state detectors to increase the solid angle and provide data over an extended angular range. Two detectors which each subtended an angular range of +/- 8° were employed. Measured angular resolution was 0.2 degrees.

The detectors were placed symmetrically on the left and right sides of the beam. An opening angle range of 100° - 180° was scanned.
Coincidence spectra for the 0.675 MeV resonance (top) and the (3-) 2.64 MeV resonance (bottom) indicating two high energy alpha particles at 0.675 MeV. The lab $\alpha-\alpha$ opening angle is 150°.

Light Nuclei from First Principles- INT- 2012
Testing the model

The simulation was asked to predict the coincidence counting rate as a function of opening angle. Coincidence data were taken for opening angles ranging from 100°-to-180°.
Both α-particles were required to have energies greater than 3 MeV. Excellent agreement is observed.
Conclusions

We have found that a two-step sequential model with \(l=3 \) primary \(\alpha \)-particles is required to describe the data at the 0.675 MeV \(2^- \) state.

The \(l=3 \) assumption predicts the existence of two high-energy \(\alpha \)-particles at an opening angle centered at 155° - as originally proposed by Dee and Gilbert in 1936! Our coincidence measurements confirm this result.
Huge impact on the reactor design!

Our discovery of TWO high energy α-particles is having a huge impact on the reactor design. They are much easier to extract and convert more efficiently into electricity.

Tri-Alpha Energy is thrilled!

Questions remain....

A challenge to theorists—
Why does the 2⁻ resonance at 16.6 MeV decay via l=3?

This resonance is assigned T=1, based upon its em decay properties. Also, the other members of the isospin triplet are observed in ¹²B and ¹²N (second excited states). How does this T=1 state decay into 3 alphas? Obviously there is strong isospin mixing.
Astrophysics

Triple-α Process:

\[^4\text{He} \rightarrow ^8\text{Be} \rightarrow ^{12}\text{C} \]

\[^4\text{He} \rightarrow \gamma \rightarrow \gamma \rightarrow ^{12}\text{C} \]

- Neutron
- Proton
- \(\gamma \) Gamma Ray

M. Hjorth-Jensen, Physics 4, 38 (2011)
Hoyle State
Hoyle State

Fynbo & Freer, Physics 4, 94 (2011)
More recently, Epelbaum et al. (Lattice EFT) find an obtuse triangular configuration.

FIG. 3: This shows initial state F, a wavefunction consisting of three alpha clusters formed by Gaussian packets centered on the vertices of a bent-arm or obtuse triangular configuration. There are a total of 24 equivalent orientations of this configuration.
$^{12}\text{C}(\gamma,\alpha)^8\text{Be}$

- 10.3 MeV
- 9.64 MeV

^{12}C

0^+

Light Nuclei from First Principles-
INT- 2012
$^{12}\text{C}(\gamma,\alpha)^8\text{Be}$

- γ-ray beam will not excite 0^+ state and will excite 3^- state with very small probability.
\[^{12}\text{C}(\gamma,\alpha)^{8}\text{Be} \]

- \(\gamma \)-ray beam will not excite \(0^+ \) state and will excite \(3^- \) state with very small probability.
- Measuring \(\alpha \)-particle angular distribution gives \(J^\pi \) of state.
Measuring $^{12}\text{C}(\gamma,\alpha)^{8}\text{Be}$ requires:
Measuring $^{12}\text{C}(\gamma, \alpha)^{8}\text{Be}$ requires:

- Intense, monoenergetic γ-ray beam
Measuring $^{12}\text{C}(\gamma, \alpha)^8\text{Be}$ requires:

- Intense, monoenergetic γ-ray beam
- Detector capable of measuring angular distributions of recoiling α-particles with little or no background
High Intensity γ-ray Source (HIγS)

- Located at the Duke Free Electron Laser Laboratory
 Part of the Triangle Universities Nuclear Laboratory (TUNL)

- Intra-cavity Compton Back Scattering of FEL photons by electrons circulating in the Duke Storage Ring
HI\(\gamma\)S \(\gamma\)-ray beam generation

Provides circularly and linearly polarized, nearly monoenergetic \(\gamma\)-rays from 2 to 100 MeV
Utilizes Compton backscattering to generate \(\gamma\)-rays
Two Bunch Mode

Light Nuclei from First Principles-
INT- 2012

Created by Brent Persue, 2005
Some typical beam intensities

<table>
<thead>
<tr>
<th>E_γ (MeV)</th>
<th>Beam on target ($\Delta E/E = 3%$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 2</td>
<td>$2 \times 10^7 \gamma/s$</td>
</tr>
<tr>
<td>8 - 16</td>
<td>2×10^8 (total flux of 2×10^9)</td>
</tr>
<tr>
<td>20 - 45</td>
<td>8×10^6</td>
</tr>
<tr>
<td>50 - 100</td>
<td>4×10^6 (will increase by $x3-5$ in 2012)</td>
</tr>
<tr>
<td>\rightarrow 160</td>
<td>1.2×10^7 (by 2015)</td>
</tr>
</tbody>
</table>
Show HIγS animation.
Drift Chamber

- quartz window
- second avalanche grid
- first avalanche grid
- anode grid
- cathode grid
- γ-ray beam
Background Rejection

Spark

Cosmic
Event Identification

$^{12}\text{C}(\gamma,\alpha)^8\text{Be}$

$^{16}\text{O}(\gamma,\alpha)^{12}\text{C}$
Time Projection

$^{12}\text{C}(\gamma,\alpha)^{8}\text{Be}$

$^{16}\text{O}(\gamma,\alpha)^{12}\text{C}$
Time Projection

$^{12}\text{C}(\gamma, \alpha)^{8}\text{Be}$ event, fit assuming $^{12}\text{C}(\gamma, \alpha)^{8}\text{Be}$

$^{16}\text{O}(\gamma, \alpha)^{12}\text{C}$ event, fit assuming $^{16}\text{O}(\gamma, \alpha)^{12}\text{C}$

$^{12}\text{C}(\gamma, \alpha)^{8}\text{Be}$ event, fit assuming $^{16}\text{O}(\gamma, \alpha)^{12}\text{C}$

$^{16}\text{O}(\gamma, \alpha)^{12}\text{C}$ event, fit assuming $^{12}\text{C}(\gamma, \alpha)^{8}\text{Be}$
Light Nuclei from First Principles
INT- 2012
Angular Distributions

- θ was calculated for each event from the track image and from the time projection.
Angular Distributions

- θ was calculated for each event from the track image and from the time projection.
- Angular distributions were fit in terms of $|E_1|$, $|E_2|$, ϕ_{12}:

$$W(\theta) = \frac{3}{2} \sin^2 \theta$$

$$\times \left(3|E_1|^2 + 25|E_2|^2 \cos^2 \theta + 10\sqrt{3}|E_1||E_2| \cos \phi_{12} \cos \theta \right)$$
Angular Distributions

- θ was calculated for each event from the track image and from the time projection.
- Angular distributions were fit in terms of $|E_1|$, $|E_2|$, ϕ_{12}:

$$W(\theta) = \frac{3}{2} \sin^2 \theta$$

$$\times \left(3|E_1|^2 + 25|E_2|^2 \cos^2 \theta + 10\sqrt{3}|E_1||E_2| \cos \phi_{12} \cos \theta \right)$$

- Since angular information is available for each event, Unbinned Maximum Likelihood fits were used.

$$L(|E_1|, |E_2|, \phi_{12}) = \prod_{i=1}^{n} W(\theta_i)$$
Angular Distributions

\[E_\gamma = 9.8 \text{ MeV} \]
\[\sigma_{E2}/\sigma = 96.8\% \]
Cross Section

\[\sigma (\mu b) \]

- **E2 cross section**
- **E1 cross section**
- **Fit 2^+ resonance**
- **Known 1^- resonance**

\[E_\gamma (\text{MeV}) \]

Light Nuclei from First Principles-
INT- 2012
Cross Section

![Graph showing cross section vs. energy](image)

<table>
<thead>
<tr>
<th>E_{res} (MeV)</th>
<th>Γ_{α}(res) (keV)</th>
<th>Γ_{γ_0}(res) (meV)</th>
<th>$B(E2 : 2^+ \rightarrow 0^+_1)$ (e2fm4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.03(11)</td>
<td>800(130)</td>
<td>60(10)</td>
<td>0.73(13)</td>
</tr>
</tbody>
</table>

Light Nuclei from First Principles-
INT- 2012
Phase

E_1-E_2 phase difference:

$$\phi_{12} = \delta_2 - \delta_1 + \arctan (\eta/2)$$
Phase

$E1-E2$ phase difference:

$$\phi_{12} = \delta_2 - \delta_1 + \arctan (\eta/2)$$

Nuclear phase shifts:

$$\delta_\ell = \arctan \left(\frac{\Gamma_\ell}{2 (E_{r\ell} - \Delta_\ell - E_{cm})} \right) - \phi_\ell$$

Hard sphere scattering phase shift:

$$\phi_\ell = \arctan \left[\frac{F_\ell}{G_\ell} \right]_{r=a}$$
Carla Froehlich (NCSU)—Simulation of ejecta from supernova explosions based upon nucleosynthesis via the νp process. Explains the large abundance of Sr observed in metal poor stars. Our results (vs JINA) impact the production of elements having $A>90$.

Summary

<table>
<thead>
<tr>
<th>2_2</th>
<th>E_{res} (MeV)</th>
<th>$\Gamma_\alpha(\text{res})$ (keV)</th>
<th>$\Gamma_{\gamma_0}(\text{res})$ (meV)</th>
<th>$B(E2 : 2^+_2 \rightarrow 0^+_1)$ (e²fm⁴)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10.03(11)</td>
<td>800(130)</td>
<td>60(10)</td>
<td>0.73(13)</td>
</tr>
</tbody>
</table>

- 2^+_2 in 12C has been directly observed through the 12C + γ → 3α reaction.
<table>
<thead>
<tr>
<th></th>
<th>E_{res} (MeV)</th>
<th>Γ_α (res) (keV)</th>
<th>Γ_γ_0 (res) (meV)</th>
<th>$B(E2: 2^+_2 \rightarrow 0^+_1)$ (e2fm^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGS</td>
<td>10.03(11)</td>
<td>800(130)</td>
<td>60(10)</td>
<td>0.73(13)</td>
</tr>
<tr>
<td>EFT</td>
<td>9.65</td>
<td></td>
<td></td>
<td>2(1)</td>
</tr>
</tbody>
</table>

- 2^+_2 in 12C has been directly observed through the 12C + $\gamma \rightarrow 3\alpha$ reaction.

- Recent *ab initio* EFT lattice calculations performed by Epelbaum, Krebs, Lähde, Lee, and Meißner predict the 2^+_2 2 MeV above the Hoyle State.
Summary

<table>
<thead>
<tr>
<th></th>
<th>E_{res} (MeV)</th>
<th>Γ_α (res) (keV)</th>
<th>Γ_{γ_0} (res) (meV)</th>
<th>$B(E2: 2_2^+ \rightarrow 0_1^+)$ (e2fm4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIγS</td>
<td>10.03(11)</td>
<td>800(130)</td>
<td>60(10)</td>
<td>0.73(13)</td>
</tr>
<tr>
<td>EFT</td>
<td>9.65</td>
<td></td>
<td></td>
<td>2(1)</td>
</tr>
</tbody>
</table>

- 2_2^+ in 12C has been directly observed through the 12C + γ \rightarrow 3α reaction.

- Recent *ab initio* EFT lattice calculations performed by Epelbaum, Krebs, Lähde, Lee, and Meißner predict the 2_2^+ \approx 2 MeV above the Hoyle State.

- Revised triple-α reaction rates can affect nucleosynthesis of heavy elements during explosive astrophysics scenarios.

Light Nuclei from First Principles - INT-2012
Acknowledgments

Mohammad Ahmed, Seth Henshaw, Jonathan Mueller, Sean Stave, and Henry Weller
Triangle Universities Nuclear Laboratory

Moshe Gai
Laboratory for Nuclear Science at Avery Point
Success of the two step model at the 2.64 MeV 3^- resonance ($\Gamma = 400$ keV).
Cross Section for the $^{11}\text{B}(p,\alpha)^{8}\text{Be} \rightarrow \alpha\alpha$ Reaction

Although 3 a-particles are emitted, the number in a given energy interval depends upon the reaction dynamics. Therefore, instead of cross section, we report $X = \text{Counts}/\text{Luminosity}$

$$X = \frac{\text{Counts}}{\text{cm}^2\text{sr}}$$

$$N_t \quad N_p \quad dW$$

$N_t = \# \text{ of target nuclei/cm}^2$

$N_p = \# \text{ of incident protons}$

$dW = \text{detector solid angle}$

X has the same units as differential cross section, but the $\# \text{ of a-particles}$ has not been divided out. It allows the user to find the number of outgoing alpha particles at any energy and angle where X is known for any specified Luminosity.