\(\eta \) and \(\eta' \) mesons
from \(N_f = 2 + 1 + 1 \) flavour lattice QCD
for the ETM collaboration

C. Michael\(^1\), K. Ottnad\(^2\), C. Urbach\(^2\), F. Zimmermann\(^2\)

arXiv:1206.6719

\(^1\) Theoretical Physics Division, Department of Mathematical Sciences,
University of Liverpool
\(^2\) Helmholtz - Institut für Strahlen- und Kernphysik (Theorie), Bethe Center for Theoretical Physics,
Universität Bonn

INT Workshop 12-2b
Flavour Singlet Pseudo-Scalar Mesons

- nine lightest pseudo-scalar mesons show a peculiar spectrum:
 - 3 very light pions (140 MeV)
 - kaons and the η around 600 MeV
 - η' around 1 GeV

- The large mass of the η' meson is thought to be caused by the QCD vacuum structure and the $U_A(1)$ anomaly

- η' meson is not a (would be) Goldstone Boson

\Rightarrow massive even in the SU(3) chiral limit
Lattice Status

- disconnected contributions significant
 ⇒ hard problem

- only a limited amount of lattice results available

- no control of systematics
 - usually only one lattice spacing
 - and/or only one pion mass

 ⇒ no clear picture

- in particular at light pion masses

$N_f = 2 + 1 + 1$ Wilson Twisted Mass Fermions

- with twisted mass formulation of LQCD only *doublets* of quarks can be considered

- light doublet, mass-degenerate:

 \[D_\ell = D_W + m_{\text{crit}} + i\mu_\ell \gamma_5 \tau^3, \quad \chi_\ell = \begin{pmatrix} \chi_u \\ \chi_d \end{pmatrix} \]

- heavy doublet, mass-split, flavour non-diagonal:

 \[D_h = D_W + m_{\text{crit}} + i\mu_\sigma \gamma_5 \tau^1 + \mu_\delta \tau^3, \quad \chi_h = \begin{pmatrix} \chi_c \\ \chi_s \end{pmatrix} \]

[Frezzotti, Rossi (2004)]

- rotation from χ- to standard ψ-basis (at maximal twist):

 \[\psi_\ell = e^{i\pi \gamma_5 \tau^3/4} \chi_\ell, \quad \psi_h = e^{i\pi \gamma_5 \tau^1/4} \chi_h \]
$N_f = 2 + 1 + 1$ Wilson Twisted Mass Fermions

Pros:
- $O(a)$ improvement at maximal twist

 [Frezzotti, Rossi; JHEP 0408 (2004)]

 ⇐ by tuning only one parameter

 - excellent scaling behaviour observed

 - mixing patterns under renormalisation can be simplified

 - note: could easily introduce u-d mass splitting as well

Cons:
- flavour and parity symmetries broken at finite values of the lattice spacing
 ⇒ technical complication

 ⇒ unphysical splittings, mostly in between $m_{\pi \pm}$ and m_{π^0}

 [Dimopoulos, Frezzotti, Michael, Rossi, CU; Phys.Rev. D81 (2010)]
The 1 + 1 Doublet

- heavy doublet:

\[D_h = D_W + m_{\text{crit}} + i\mu_\sigma\gamma_5\tau^1 + \mu_\delta\tau^3, \quad \chi_h = \begin{pmatrix} \chi_c \\ \chi_s \end{pmatrix} \]

- think of \(\mu_\sigma \) as the mean s/c mass and \(\mu_\delta \) the splitting

- splitting \(\mu_\delta \) orthogonal to twist \(\mu_\sigma \)

(\(\tau^3 \) versus \(\tau^1 \))

- obtain renormalised quark masses of the doublet

\[\hat{m}_s = Z_p^{-1}\mu_\sigma - Z_s^{-1}\mu_\delta \]
\[\hat{m}_c = Z_p^{-1}\mu_\sigma + Z_s^{-1}\mu_\delta \]

- fermion determinant positive and \(O(a) \) improvement remains valid

[Frezzotti, Rossi (2004)]
Flavour Singlet Pseudo-Scalar Mesons

• in the SU(3) symmetric case (sloppy notation)

\[\eta_8 : \bar{u}i\gamma_5 u + \bar{d}i\gamma_5 d - 2\bar{s}i\gamma_5 s \]

\[\eta_0 : \bar{u}i\gamma_5 u + \bar{d}i\gamma_5 d + \bar{s}i\gamma_5 s \]

• SU(3) symmetry broken \(\Rightarrow\) mixing

\(\Rightarrow\) SU(2) plus strange:

\[
\begin{pmatrix}
|\eta\rangle \\
|\eta'\rangle
\end{pmatrix}
= \begin{pmatrix}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{pmatrix} \cdot
\begin{pmatrix}
|\eta_\ell\rangle \\
|\eta_s\rangle
\end{pmatrix}
\]

• \(N_f = 2 + 1 + 1\) possible charm contribution

\(\eta, \eta'\) from LQCD
Flavour Singlet Pseudo-Scalar Mesons

- need to estimate correlator matrix

\[C = \begin{pmatrix}
\eta_{ll} & \eta_{ls} & \eta_{lc} \\
\eta_{sl} & \eta_{ss} & \eta_{sc} \\
\eta_{cl} & \eta_{cs} & \eta_{cc}
\end{pmatrix} \]

- \(\eta_{XY} \) correlator of appropriate interpolating fields, e.g.

\[\eta_{ss}(t) \equiv \langle \bar{s}i\gamma_5 s(t) \bar{s}i\gamma_5 s(0) \rangle \]

projected to zero momentum

- \(\eta \): lowest state, \(\eta' \): first state, \(\eta_c \) ...
A Little Twisted Mass Algebra

- rotation to twisted basis

\[
\frac{1}{\sqrt{2}} (\bar{\psi}_u i \gamma_5 \psi_u + \bar{\psi}_d i \gamma_5 \psi_d) \rightarrow \frac{1}{\sqrt{2}} (\bar{\chi}_d \chi_d - \bar{\chi}_u \chi_u) \equiv \mathcal{O}_\ell ,
\]

- and in the heavy sector

\[
\begin{pmatrix} \bar{\psi}_c \\ \bar{\psi}_s \end{pmatrix}^T i \gamma_5 \frac{1 \pm \tau^3}{2} \begin{pmatrix} \psi_c \\ \psi_s \end{pmatrix} \rightarrow \begin{pmatrix} \bar{\chi}_c \\ \bar{\chi}_s \end{pmatrix}^T -\tau^1 \pm i \gamma_5 \tau^3 \frac{1}{2} \begin{pmatrix} \chi_c \\ \chi_s \end{pmatrix} \equiv \mathcal{O}_{c,s} .
\]

- therefore

\[
\mathcal{O}_c \equiv Z (\bar{\chi}_c i \gamma_5 \chi_c - \bar{\chi}_s i \gamma_5 \chi_s)/2 - (\bar{\chi}_s \chi_c + \bar{\chi}_c \chi_s)/2 ,
\]

\[
\mathcal{O}_s \equiv Z (\bar{\chi}_s i \gamma_5 \chi_s - \bar{\chi}_c i \gamma_5 \chi_c)/2 - (\bar{\chi}_s \chi_c + \bar{\chi}_c \chi_s)/2 .
\]

- with ratio of non-singlet renormalisation constants

\[
Z \equiv \frac{Z_P}{Z_S}
\]
Estimating Disconnected Diagrams

- fermionic disconnected contributions noisy
 \[\Rightarrow \text{need as many as possible observations} \]

- use \(R \) stochastic volume sources \(\xi^r \)
 \[
 \lim_{R \to \infty} [\xi_i^* \xi_j]_R = \delta_{ij}, \quad \lim_{R \to \infty} [\xi_i \xi_j]_R = 0
 \]

- then we get
 \[
 [\xi_i^r \phi_j] = (D^{-1})_{ji} + \text{noise}
 \]
 with
 \[
 \phi_j = (D^{-1})_{jk} \xi_k^r
 \]

- noise \(\propto \sqrt{V_s/R} \) while signal \(\mathcal{O}(1) \)
A Very Efficient Variance Reduction Method

- relation in between up and down Dirac operator
 \[D_u - D_d = 2 \mu_\ell \gamma_5 \]
- multiply with \(1/D_u \) from left, \(1/D_d \) from right
 \[\frac{1}{D_d} - \frac{1}{D_u} = 2 \mu_\ell \frac{1}{D_u} \gamma_5 \frac{1}{D_d} \]
- Lhs is what we want, rhs has an extra volume loop
 \Rightarrow \text{can be estimated from}
 \[[\phi^* \phi]_R + \text{noise} \]
- noise \(\propto \sqrt{V_s^2/R} \), but signal \(\propto V \)
- only applicable in the light sector involving \(\tau^3 \)
A Very Efficient Variance Reduction Method: Example

- Example for strangeness content of the nucleon
 [ETMC, Dinter et al., JHEP 1208 (2012)]

- Easily a factor four improvement

\[N_R(t_0=6) dR(t_0=6) \]
Ensemble-Details

- gauge configurations from ETM Collaboration
 [ETMC, R. Baron et. al., JHEP 06 111 (2010)]

- Iwasaki Gauge action
 [Iwasaki, Nucl. Phys. B258, 141]

- three lattice spacings:
 \[a_A = 0.086 \text{ fm}, \quad a_B = 0.078 \text{ fm} \quad \text{and} \quad a_D = 0.061 \text{ fm} \]

- charged pion masses range from \(\approx 230 \text{ MeV} \) to \(\approx 500 \text{ MeV} \)

- \(L \geq 3 \text{ fm} \) and \(M_\pi \cdot L \geq 3.5 \) for most ensembles

- \(\approx 600 \) up to \(\approx 2500 \) gauge configuration per ensemble

- \(\mu_\sigma, \mu_\delta \) fixed for each \(\beta \)

- use \(r_0 = 0.45(2) \text{ fm} \) (from \(f_\pi \)) throughout the talk
Analysis Procedure

- 24 to 32 volume sources per gauge for disconnecteds have tested one ensemble with 64 sources
- local and smeared operators
- two γ-combinations $i\gamma_5$, $i\gamma_0\gamma_5$
- two independent fitting methods (up to 12×12 matrix)
 - solving the GEVP
 - using a factorising fit
- errors computed by bootstrapping and blocking 1000 bootstrap samples
 ⇒ significant autocorrelation for η': ~ 20 trajectories
Effective Masses B_{25}

3 × 3 matrix

- ground state η well determined
- next state hardly plateaus

6 × 6 matrix

η, η' from LQCD
flavour content qualitatively as expected
- no charm contribution to η and η'
- third state (not shown) is charm only (almost)
Summary Masses

- η mass quite precise
- η' rather noisy
 large systematic uncertainties
- mild pion mass dependence in M_η
- physical strange quark mass not fixed for different β values!
- what can we say about lattice artifacts?
- how to perform the chiral extrapolation?
Strange Quark Mass Dependence

- \(\mu_\sigma \) and \(\mu_\delta \) fixed for each \(\beta \)

- \(m_s \) unfortunately not perfectly tuned to its physical value

- we have two re-tuned ensembles for \(a_A (\beta = 1.90) \)

\(\Rightarrow \) can estimate \(m_s \) dependence

\(\Rightarrow \) need to come up with a strategy to correct for this effect!
Scaling Test for M_η \hspace{1cm} (1)

⇒ fix r_0M_{PS}, r_0M_K and V/r_0

• we don’t see a volume dependence in M_η
⇒ ignore it

• estimate

\[D_\eta \equiv \frac{d(aM_\eta)^2}{d(aM_K)^2} = 1.6(2) \]

from two A-ensembles

• now assume:
D_η independent of $\beta, \mu_\ell, \mu_\sigma, \mu_\delta$
Scaling Test for M_η (2)

- use ensembles $A60$, $B55$, $D45$ with $r_0 M_{PS} \approx 0.9$

- correct M_η using D_η linearly in M_K^2

 $\Rightarrow r_0 M_K = 1.34$ fixed

- compatible with both, constant and linear continuum extrapolation

 \Rightarrow assign conservative 8% error from difference to all our results
Chiral Extrapolation of M_η

- more ambitious: shift all M_η to physical strange mass
- fit
 \[g_K = a + b(r_0 M_{PS})^2 \]
 to data for $(r_0 M_K)^2$ from A ensembles
- adjust a to match physical M_K for $M_{PS} = M_\pi \Rightarrow \tilde{g}_K$
- compute
 \[\delta_K[(r_0 M_{PS})^2] = (r_0 M_K)^2 - \tilde{g}_K[(r_0 M_{PS})^2] \]
 for all ensembles
Chiral Extrapolation of M_η

- now correct all $(r_0 M_\eta)^2$ by corresponding

\[D_\eta \cdot \delta_K [(r_0 M_{PS})^2] \]

\[\Rightarrow (r_0 \bar{M}_\eta)^2 [(r_0 M_{PS})^2] \]

- all β-values fall on the same curve!

- extrapolate $(r_0 \bar{M}_\eta)^2$ linearly in $(r_0 M_{PS})^2$ to $M_{PS} = M_\pi$

- result

\[M_\eta = 549(33)_{\text{stat}}(44)_{\text{sys}} \text{ MeV} \]
Chiral Extrapolation of M_η

- alternatives to avoid D_η
 - use the ratio $(M_\eta/M_K)^2$

- all β-values on a single curve
 - in particular: m_s dependence seems to cancel

- extrapolate linearly in $(r_0M_{PS})^2$ to physical point

- result

 $$M_\eta = 558(13)_{\text{stat}}(45)_{\text{sys}} \text{ MeV}$$
Chiral Extrapolation of M_η

- or use GMO relation

\[3M_\eta^2 = 4M_K^2 - M_\pi^2 \]

valid for SU(3)

- experimentally ~ 0.925

- result

\[M_\eta = 559(14)_{\text{stat}}(45)_{\text{sys}} \text{ MeV} \]

- weighted average over three methods

\[M_\eta = 557(15)_{\text{stat}}(45)_{\text{sys}} \text{ MeV} \]
Comparing to Other Lattice Results

- overall mutual agreement

- apart from maybe UKQCD at smallest M_{PS}

- we have pushed significantly more chiral

- ETMCs η' is much noisier despite
 - similar number of independent gauges (RBC, HSC, ETMC)
 - similar number of inversions (RBC, ETMC)
η and η’ Mixing

- write correlator matrix

\[C_{qq'}(t) = \sum_n A_{q,n} A_{q',n} \frac{1}{2m(n)} \left[\exp(-m(n)t) + \exp(-m(n)(T-t)) \right] \]

with amplitudes \(A_{q,n} \) corresponding to \(\langle 0|\bar{q}q|n\rangle \) (\(n \equiv \eta, \eta', \ldots \) and \(q = \ell, s, c \))

- define mixing angles via (ignoring charm)

\[
\begin{pmatrix} A_{\ell,\eta} & A_{s,\eta} \\ A_{\ell,\eta'} & A_{s,\eta'} \end{pmatrix} = \begin{pmatrix} f_\ell \cos \phi_\ell & -f_s \sin \phi_s \\ f_\ell \sin \phi_\ell & f_s \cos \phi_s \end{pmatrix}
\]

- for \(\phi_s \approx \phi_\ell \)

\[
\tan^2 \phi = -\frac{A_{\ell,\eta'} A_{s,\eta}}{A_{\ell,\eta} A_{s,\eta'}}
\]
\(\eta\) and \(\eta'\) Mixing

- \(\phi_\ell\) and \(\phi_s\) are too noisy separately

- single mixing angle \(\phi\) can be determined

- linear fit in \((r_0 M_{PS})^2\)
 \[
 \phi = 44(5)^\circ
 \]

 or in singlet/octet basis
 \[
 \theta = -10(5)^\circ
 \]

\(\Rightarrow\) good agreement with other determinations

- note: statistical error only
Mixed Action Approach

• idea: use different valence action for s and c
 ⇒ to avoid s/c flavour mixing
 ⇒ to vary strange and charm quark masses

• up/down stay unitary

• add two valence strange quarks s and s'

\[
s \equiv s(+) : D_W + m_{\text{crit}} + \mu_s i\gamma_5
\]

\[
s' \equiv s(-) : D_W + m_{\text{crit}} - \mu_s i\gamma_5
\]

• can proof that continuum limit is correct
 [Frezzotti, Rossi, JHEP 08, 007 (2004)]

• the different signs allow to use the variance reduction trick

\[
\bar{\psi}_s \psi_s = \frac{1}{2} (\bar{\psi}_s \psi_s + \bar{\psi}_s \psi_s) = \frac{1}{2} (\bar{\chi}_s \chi_s - \bar{\chi}_s' \chi_s')
\]
Matching Unitary and Mixed Actions

- there are different matching quantities possible
 - match μ_δ with $\mu_\sigma - Z\mu_\delta$
 - unitary with mixed $\bar{s}(+d(-)$ kaon (denote M_{K^+})
 \Rightarrow smallest lattice artifacts for f_{PS} and M_{PS}
 [Sharpe, Wu, Phys. Rev. D 71 (2005), Frezzotti et al., JHEP 06 04 (2006)]
 - unitary with mixed $\bar{s}(-d(-)$ kaon (denote M_{K^0S})
 \Rightarrow usually larger lattice artifacts
 - and of course many other quantities

\Rightarrow tried first to match with M_{K^+}
Matching Unitary and Mixed Actions

- there are different matching quantities possible
 - match μ_δ with $\mu_\sigma - Z\mu_\delta$
 - unitary with mixed $\bar{s}(+)d(-)$ kaon (denote M_{K^+})
 \Rightarrow smallest lattice artifacts for f_{PS} and M_{PS}
 - unitary with mixed $\bar{s}(-)d(-)$ kaon (denote $M_{K^{0S}}$)
 \Rightarrow usually larger lattice artifacts
 - and of course many other quantities
 \Rightarrow tried first to match with M_{K^+}

- ... and got pathological results

- so, why is that?
Matching Unitary and Mixed Actions

- η, η' have significant disconnected contributions
 \Rightarrow which don't know about μ_s!

- connected and disconnected have to match to produce the correct correlation matrix
 \Rightarrow match connected only $M_{\eta ss}$

- due to $M_{PS^\pm} - M_{PS^0}$ splitting: significantly smaller matching μ_s-value
μ_S-Dependence

\[m_{\text{eff}} \cdot r_0 \]

\[\mu S \cdot r_0 \]

- at $M_{\eta_{ss}}$ matching point we find reasonable agreement in between unitary and mixed approach
 - currently exploring this further
Summary

- η and η' for three lattice spacings and various quark mass values
- η can be extracted precisely

 \[M_\eta = 557(15)_{\text{stat}}(45)_{\text{sys}} \text{ MeV} \]
- η' noisy, significant systematics
- Single mixing angle

 \[\phi = 44(5)^\circ \text{ or } \theta = 10(5)^\circ \]
- Small lattice artifacts in M_η
Outlook

- noise reduction techniques for η'
- larger operator basis
- $\eta\pi$ scattering length
- $\eta \rightarrow \gamma\gamma$
Acknowledgements

- computing time from
 - FZ Jülich on JUGENE and JUDGE
 - on local GPU cluster founded by DFG

- financial support from DFG in CRC 16

- supported by the Bonn-Cologne Graduate School (BCGS)

- thanks to all members of ETMC
ϕ_ℓ and ϕ_s

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1}
\caption{Plot showing the dependence of ϕ_ℓ and ϕ_s on $(r_0 M_{PS})^2$.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig2}
\caption{Plot showing the dependence of ϕ_ℓ and ϕ_s on $(r_0 M_{PS})^2$.}
\end{figure}