Multidimensional Hydrodynamics of Core-Collapse Supernovae

Josh Dolence, Princeton

with
Adam Burrows
&
Jeremiah Murphy
A Multidimensional History

1979 Lepton-gradient-driven convection (e.g. Epstein)

1985 Neutron fingers (e.g. Wilson)

1987 Prompt convection (e.g. Burrows)

1990 Neutrino-driven convection (e.g. Bethe)

2003 Standing Accretion Shock Instability (Blondin et al.)

Now Neutrino-driven convection & the SASI
Multi-D hydrodynamics is \textbf{a} key ingredient...

But of course we should worry about

- Neutrino transport
- Microphysics (EOS)
- General relativity
- Progenitors
Numerical Setup

- CASTRO: AMR Godunov
- Monopole gravity

\[H = H_0 \frac{L_{\nu e}}{r^2} (x_n + x_p)e^{-\tau} \]

\[C = C_0 T^6 (x_n + x_p)e^{-\tau} \]

- Shen et al. (1998) EOS
- 15 \text{ } M_{\odot} \text{ Woosley & Weaver ('95)}
- Liebendörfer’s \text{ } Y_e \text{ scheme}
Results

2D is not 3D.
Pop quiz: How many dimensions am I?

Multi-D Hydrodynamics of Core Collapse Supernovae

Josh Dolence
Flows are different, even by eye.
Does it matter? Yes

Multi-D Hydrodynamics of Core Collapse Supernovae

Josh Dolence
Structure of multi-D models

1. The shock
\[a_l^m = \frac{(-1)^{|m|}}{\sqrt{4\pi (2l + 1)}} \int R_s(\theta, \phi) Y_l^m(\theta, \phi) d\Omega \]
Where’s the “sloshing” in 3D?

Burrows et al. 2012
Where’s the “sloshing” in 3D?

Multi-D Hydrodynamics of Core Collapse Supernovae
Evolution of the shock surface in 3D L=2.2 model
Evolution of the shock surface in 3D L=2.3 model
Structure of multi-D models

2. Turbulence
2D and 3D nonlinear turbulence are different.
Power distributed differently. Inverse vs. forward energy cascades?
See Hanke et al. 2012 for similar plots.
2D has longer mean dwell time but 3D has long tail
Which is more important?
Conclusions

- 2D & 3D shock structure and evolution are different
- 2D & 3D power spectra of turbulence are different
- 2D & 3D dwell time distributions are different
- Yet explosions occur earlier in 3D. Why?