Complex Langevin dynamics: an overview of recent developments

Frank James
Gert Aarts1, Erhard Seiler2, Ion-Olimpiu Stamatescu3

12th March 2012

1Swansea University
2MPI Munich
3Uni. Heidelberg
Introduction to complex Langevin dynamics
Formal arguments for correct convergence
Criteria for correctness
An improved integration algorithm
Study of SU(3) spin model with chemical potential
Introduction

- Goal: lattice simulations to determine QCD phase structure
- Problem: chemical potential makes action complex
- Complex weight can’t be interpreted as a probability

\[Z = \int D\phi \left| e^{-S(\phi)} \right| e^{i\varphi} \]

- Standard methods based on importance sampling break down
- Origin of the sign problem
Reweighting

- Can shift complex phase from weight to observable
- Simulate with respect to a real and positive weight, phase quenched theory

\[
\langle O \rangle = \frac{\int D\phi \, O(\phi)e^{i\phi}|e^{-S(\phi)}|}{\int D\phi \, e^{i\phi}|e^{-S(\phi)}|} = \frac{\langle Oe^{i\phi} \rangle_{pq}}{\langle e^{i\phi} \rangle_{pq}}
\]

- Problem: the phase vanishes exponentially as volume \(\Omega \to \infty \):

\[
\langle e^{i\phi} \rangle_{pq} = \frac{Z}{Z_{pq}} \sim e^{-\Omega\Delta f}
\]

- Required simulation time grows exponentially
- Can measure \(\langle e^{i\phi} \rangle_{pq} \) to quantify “severeness” of sign problem
Langevin dynamics does not rely on importance sampling

Add fictitious time-like parameter ϑ (Langevin time), $\phi \rightarrow \phi(\vartheta)$

Equation of motion with noise term, Langevin equation

$$\frac{\partial \phi}{\partial \vartheta} = -\frac{\delta S(\phi)}{\delta \phi} + \eta$$

Fluctuations from Gaussian noise

$$\langle \eta(\vartheta) \eta(\vartheta') \rangle = 2\delta(\vartheta - \vartheta'), \quad \langle \eta(\vartheta) \rangle = 0$$
Expectation values

- Expectation values taken as noise averages
- Equal to quantum expectation values in limit of large times

$$\lim_{\vartheta \to \infty} \langle O(\vartheta) \rangle_\eta = \langle O \rangle$$

- When action is real, can be shown that the stationary solution generates configurations distributed e^{-S}
Complex Langevin dynamics

- With action complex, can still write down the (complex) Langevin equation
- Complex drift term forces all degrees of freedom into complex plane
- Need to complexify degrees of freedom $\phi \rightarrow \phi^R + i\phi^I,$

$$\frac{\partial \phi^R}{\partial \vartheta} = K^R + \eta, \quad \frac{\partial \phi^I}{\partial \vartheta} = K^I$$

- Drift terms given by

$$K^R = -\text{Re} \left. \frac{\delta S}{\delta \phi} \right|_{\phi \rightarrow \phi^R + i\phi^I}, \quad K^I = -\text{Im} \left. \frac{\delta S}{\delta \phi} \right|_{\phi \rightarrow \phi^R + i\phi^I}$$
Discretised equations

- Discretise time: $\vartheta = \epsilon n$
- Standard (Euler) integration:
 \[
 \phi^R(n + 1) = \phi^R(n) + \epsilon K^R(n) + \sqrt{\epsilon} \eta(n)
 \]
 \[
 \phi^I(n + 1) = \phi^I(n) + \epsilon K^I(n)
 \]
- Introduces $O(\epsilon)$ stepsize corrections
- Discrete process generates configurations distributed with effective action
 \[
 \tilde{S} = S_0 + \epsilon S_1 + \ldots
 \]
- Correct results obtained by extrapolation to $\epsilon \to 0$
A simple example

- Single degree of freedom:
 \[S = \frac{1}{2} \sigma x^2, \quad \sigma = A + iB \]

- Complexify \(x \rightarrow x + iy \) and get Langevin equations
 \[\dot{x} = K_x + \eta, \quad \dot{y} = K_y \]

- Force terms
 \[K_x = -Ax + By, \quad K_y = -Ay - Bx \]

- Can solve the equation of motion directly, taking initial conditions \(x(0) = y(0) = 0 \):
 \[x(\vartheta) = \int_0^{\vartheta} e^{-A(\vartheta - s)} \cos[B(\vartheta - s)]\eta(s)ds \]
 \[y(\vartheta) = -\int_0^{\vartheta} e^{-A(\vartheta - s)} \sin[B(\vartheta - s)]\eta(s)ds \]
A simple example

- Expectation values in limit $\nu \to \infty$

 \[
 \langle x^2 \rangle = \frac{1}{2A} \frac{2A^2 + B^2}{A^2 + B^2} \\
 \langle y^2 \rangle = \frac{1}{2A} \frac{B^2}{A^2 + B^2} \\
 \langle xy \rangle = -\frac{1}{2} \frac{B}{A^2 + B^2}
 \]

- The correct (holomorphic) combination is recovered

 \[
 \langle x^2 \rangle \to \langle x^2 - y^2 + 2i xy \rangle = \frac{A - iB}{A^2 + B^2} = \frac{1}{A + iB} = \frac{1}{\sigma}
 \]
What is the problem?

- Looks good: simple idea, easy to implement and known about since 1980s
- Some problems:
 - New degree of freedom ϕ^I is unbounded
 - Simulations can be unstable and follow runaway trajectories in direction ϕ^I
 - No proof of convergence to correct distribution (or at all)
 - Simulations can converge to a well defined distribution, but results turn out to be wrong

- Instabilities cured by careful integration with an adaptive stepsize

 Aarts, FJ, Seiler, Stamatescu, 2010
Formal arguments

- Aim: understand conditions for correct convergence of complex Langevin process
- For simplicity, consider a single degree of freedom, x
- Replace original measure with the equilibrium distribution P of the complex Langevin process
 1. Complex measure $e^{-S}dx$, which suffers from a sign problem
 2. Real and positive measure $Pdx dy$, complex Langevin solution
- Expectation values of holomorphic functions should agree
Fokker-Planck equation

- Fokker-Planck equation dual to complex Langevin process

\[\frac{\partial}{\partial \vartheta} P(x, y; \vartheta) = L^T P(x, y; \vartheta) \]

- Fokker-Planck operator given by

\[L^T = \nabla_x[\nabla_x - K_x] - \nabla_y K_y \]

- \(P(x, y; \vartheta) \) is a real distribution
- Probability density of at time \(\vartheta \) for the complexified variables \(x, y \)
Also consider the complex density \(\rho(x; \vartheta) \) with \(x \) real

\[
\frac{\partial}{\partial \vartheta} \rho(x; \vartheta) = L_0^T \rho(x; \vartheta)
\]

Complex Fokker-Planck operator

\[
L_0^T = \nabla_x [\nabla_x + (\nabla_x S(x))]
\]

Complex density represents original description, suffers from sign problem

Correct stationary solution for \(\rho \) exists

\[
\rho(x; \infty) \propto e^{-S(x)}
\]
Evolution of the densities

• Define expectation values

\[\langle O \rangle_{P(\vartheta)} = \frac{\int O(x + iy)P(x, y; \vartheta)dxdy}{\int P(x, y; \vartheta)dxdy} \]

\[\langle O \rangle_{\rho(\vartheta)} = \frac{\int O(x)\rho(x; \vartheta)dx}{\int \rho(x; \vartheta)dx} \]

• Need to show that expectation values match

\[\langle O \rangle_{P(\vartheta)} = \langle O \rangle_{\rho(\vartheta)} \]

• Initial conditions match requires

\[P(x, y; 0) = \rho(x; 0)\delta(y) \]
Shifting time dependence

- Shift time dependence from densities to observable
- On holomorphic observables, may act with Langevin operator

\[\tilde{L} = \left[\nabla_x - (\nabla_x S(x)) \right] \nabla_x \]

- Action of \(\tilde{L} \) on holomorphic functions agrees with that of \(L \)
- Evolution of observables given by

\[
\frac{\partial}{\partial \vartheta} O(x; \vartheta) = \tilde{L} O(x; \vartheta)
\]

- Formally solved by

\[
O(x; \vartheta) = \exp(\vartheta \tilde{L}) O(x)
\]
Conditions for correct results

Consider

\[F(\vartheta, \vartheta') = \int P(x, y; \vartheta - \vartheta') O(x + iy; \vartheta') dx dy \]

It interpolates between the two expectation values

\[F(\vartheta, 0) = \int P(x, y; \vartheta) O(x + iy; 0) dx dy = \langle O \rangle_{P(\vartheta)} \]

\[F(\vartheta, \vartheta) = \int P(x, y; 0) O(x + iy; \vartheta) dx dy \]

\[= \int \rho(x; 0) \left(e^{\vartheta L_0} O \right) (x; 0) dx \]

\[= \int O(x; 0) \left(e^{{\vartheta}^T L_0} \rho \right) (x; 0) dx \]

\[= \langle O \rangle_{\rho(\vartheta)} \]
Integration by parts

- Expectation values match if $F(\vartheta, \vartheta')$ independent of ϑ:

$$
\frac{\partial}{\partial \vartheta'} F(\vartheta, \vartheta') = - \int (L^T P(x, y; \vartheta - \vartheta')) O(x + iy; \vartheta') \, dx \, dy + \int P(x, y; \vartheta - \vartheta') L O(x + iy; \vartheta') \, dx \, dy
$$

- Integration by parts gives required cancellation

$$
\int P(x, y; \vartheta - \vartheta') L O(x + iy; \vartheta') \, dx \, dy \rightarrow \int L^T P(x, y; \vartheta - \vartheta') O(x + iy; \vartheta') \, dx \, dy
$$

- Needs boundary terms to vanish for $\langle O \rangle_\rho = \langle O \rangle_P$
Vanishing boundary terms requires decay of distribution to be sufficiently fast.

Products of observable and distribution (and derivatives)

\[P(x, y; \vartheta - \vartheta') O(x + iy; \vartheta') \]

Real direction \(x \) will be either compact or distribution rapidly decaying.

Need distribution "narrow" and fast decay in imaginary direction \(y \).
Criteria for correctness

- Take slightly weaker condition \(\vartheta' = 0 \) and \(\vartheta \to \infty \)
- Condition now becomes

\[
\left. \frac{\partial}{\partial \vartheta'} F(\infty, \vartheta') \right|_{\vartheta' = 0} = - \int (L^T P(x, y, \infty)) O(x + iy, 0) dx dy + \\
\int P(x, y, \infty) LO(x + iy, 0) dx dy
\]

- First term vanishes automatically due to \(L^T P(x, y; \infty) = 0 \)
- Therefore \(\vartheta' \)-independence requires

\[
\langle LO \rangle = \int P(x, y; \infty) LO(x + iy; 0) dx dy = 0
\]

- Can be checked for any given observable
- Strong statement: should be true for all observables
SU(3) spin model

- Effective dimensionally reduced polyakov loop model for QCD
- Studied using complex Langevin dynamics in 1980s

- Recently developed method using flux formalism to circumvent sign problem in an alternate way

- Action given by \(S = S_B + S_F \),

\[
S_B = -\beta \sum_x \sum_{\nu=1}^3 \text{Tr} \ U_x \text{Tr} \ U_{x+\hat{\nu}}^\dagger + \text{Tr} \ U_{x+\hat{\nu}} \text{Tr} \ U_x^\dagger
\]

\[
S_F = -h \sum_x e^{\mu \text{Tr} \ U_x} + e^{-\mu \text{Tr} \ U_x^\dagger}
\]

- Contribution \(S_F \) makes action complex when \(\mu \neq 0 \), sign problem
Phase transition in region of small h
Disordered (confined) phase for lower β values
Ordered (deconfined) phase for higher β values
Phases separated by a first-order transition
Increasing chemical potential weakens the transition and becomes a crossover at a critical point
At larger h there is a crossover only
Phase structure with small h
Langevin equations

- Can diagonalise U_x, write in terms of angles

$$\text{Tr } U_x = e^{i\phi_1 x} + e^{i\phi_2 x} + e^{-i(\phi_1 x + \phi_2 x)}$$

- Must include reduced Haar measure

$$S_H = -\sum_x \ln \left[\sin^2 \left(\frac{\phi_1 x - \phi_2 x}{2} \right) \sin^2 \left(\frac{2\phi_1 x + \phi_2 x}{2} \right) \sin^2 \left(\frac{\phi_1 x + 2\phi_2 x}{2} \right) \right]$$

- Effective action $S_{\text{eff}} = S_B + S_F + S_H$

- Langevin dynamics then given by

$$\frac{\partial}{\partial \vartheta} \phi_{ax} = K_{ax} + \eta_{ax}, \quad K_{ax} = -\frac{\partial S_{\text{eff}}}{\partial \phi_{ax}}$$
Phase transition at $\mu = 0$

\[
\mu=0, \ h=0.02, \ 10^3
\]

\[
\langle \text{Tr}(U+U^{-1})/2 \rangle
\]

\[
\beta
\]

\[
0.12 \ 0.125 \ 0.13 \ 0.135 \ 0.14
\]
Imaginary chemical potential

- With imaginary chemical potential the action is real, no sign problem
- Complex Langevin results should be continuous across $\mu^2 = 0$ from the imaginary chemical potential results
- Non-analyticity is a sign of convergence to wrong limit
- XY model is an example of non-analyticity and incorrect convergence, where CL failed in part of the phase diagram

Choose observable even in μ, $\langle \text{Tr} (U + U^{-1}) \rangle / 2$

Aarts and FJ, 2010
Analyticity in μ^2

\[\langle \frac{\text{Tr}(U+U^{-1})}{2} \rangle \]

$\beta = 0.135, 0.134, 0.132, 0.130, 0.128, 0.126, 0.124, 0.120$

$h = 0.02, 10^3$

\[-1 -0.5 0 0.5 1 \]

\[0 0.5 1 1.5 2 \]
Taylor series expansion

- Can perform a Taylor series expansion in μ
- Simulations at $\mu = 0$ used to extrapolate to $\mu > 0$
- Provides test for correct results at $\mu \neq 0$ for small chemical potentials
- Free energies in full and phase quenched theories:

$$f(\mu) = f(0) - (c_1 + c_2 h) h \mu^2 + O(\mu^4)$$
$$f_{pq}(\mu) = f(0) - c_1 h \mu^2 + O(\mu^4)$$

- With

$$c_1 = \frac{1}{\Omega} \sum_x \langle \text{Tr } U_x \rangle_{\mu=0} = 0.1146(21),$$
$$c_2 = \frac{1}{2\Omega} \sum_{xy} \langle \text{Tr } (U_x - U_x^\dagger) \text{Tr } (U_y - U_y^\dagger) \rangle_{\mu=0} = -3.534(72)$$
$\beta=0.125$, $h=0.02$, phase quenched
Density and Silver Blaze problem

- Silver Blaze problem: $\mu \neq 0$ but observables μ-independent
 - Requires precise cancellations in numerical simulations
 - Density given by
 \[
 \langle n \rangle = \frac{1}{\Omega} \frac{\partial \ln Z}{\partial \mu} = \langle h e^{\mu} \text{Tr} \, U_x - h e^{-\mu} \text{Tr} \, U^\dagger_x \rangle
 \]
 - When $\mu \neq 0$ there is a difference between $\langle \text{Tr} \, U \rangle$ and $\langle \text{Tr} \, U^\dagger \rangle$
 - Silver Blaze effect requires μ-independence: $\langle \text{Tr} \, U \rangle = \langle \text{Tr} \, U^\dagger \rangle$
 - Not possible to satisfy both requirements: no Silver Blaze here
 - Phase quenched:
 \[
 \langle n \rangle_{pq} = h \sinh \mu \langle \text{Tr} \, U_x + \text{Tr} \, U^\dagger_x \rangle_{pq}
 \]
- $\langle n \rangle_{pq} \neq 0$ immediately once $\mu \neq 0$
Density Taylor expansion

\[\beta = 0.125, \ h = 0.02, \ 10^3 \]

\[\langle n \rangle \]

- full
- phase quenched
Improved algorithm

- Need to extrapolate to vanishing stepsize $\epsilon \to 0$
- Standard algorithm (Euler integration) has $O(\epsilon)$ corrections
- Simple mid-point scheme with improved drift terms but noise unchanged does not improve corrections
- Must also modify noise terms
- An improved algorithm proposed for real Langevin dynamics

Chien-Cheng Chang, 1987

- Reduces corrections to $O(\epsilon^2)$ for free theories and $O(\epsilon^{3/2})$ for coupled systems
Improved algorithm

- Add intermediate steps $\psi, \tilde{\psi}$ and modify noise terms

\[
\psi_{ax}(n) = \phi_{ax}(n) + \frac{1}{2} \epsilon K[\phi_{ax}(n)] + k \sqrt{\epsilon} \tilde{\alpha}_{ax}(n),
\]
\[
\tilde{\psi}_{ax}(n) = \phi_{ax}(n) + \frac{1}{2} \epsilon K[\phi_{ax}(n)] + l \sqrt{\epsilon} \tilde{\alpha}_{ax}(n),
\]
\[
\phi_{ax}(n + 1) = \phi_{ax}(n) + \epsilon \left(aK[\psi_{ax}(n)] + bK[\tilde{\psi}_{ax}(n)] \right) + \sqrt{\epsilon} \alpha_{ax}(n)
\]

- Coefficients chosen to cancel $O(\epsilon)$ contributions:

\[
a = \frac{1}{3}, \quad b = \frac{2}{3}, \quad k = 0, \quad l = \frac{3}{2}
\]

- Random variable $\tilde{\alpha}_{ax}(n) = \frac{1}{2} \alpha_{ax}(n) + \frac{\sqrt{3}}{6} \xi_{ax}(n)$

- Gaussian noise terms α, ξ
Stepsize corrections: observables

\[\langle \text{Tr} U \rangle \]

\[\beta=0.125, \mu=3, h=0.02, 10^3 \]

\[\langle \text{Tr} U^{-1} \rangle \]

- Lowest order
- Improved

\[\varepsilon \]

\[0 \quad 0.00025 \quad 0.0005 \quad 0.00075 \quad 0.001 \]
Stepsize corrections: criteria

$\beta=0.125$, $\mu=3$, $h=0.02$, 10^3

- $\langle LTrU \rangle$ - lowest order
- $\langle LTrU \rangle$ - improved
- $\langle LTrU^{-1} \rangle$ - lowest order
- $\langle LTrU^{-1} \rangle$ - improved
Criteria for correctness

- Clear linear stepsize correction with standard algorithm
- Stepsize corrections much smaller with improved algorithm
- Find that $\langle LO \rangle$ vanish in limit of $\epsilon \to 0$
- Note: condition must be satisfied even with real Langevin dynamics
- Condition that $\langle LO \rangle = 0$ therefore quantifies stepsize corrections
Distribution of observables

- Compute histogram of observables during Langevin evolution
- Gives a distribution of values sampled by the process
- Complexified space should be explored
- Need distribution sufficiently localised for criteria to be satisfied
- Look at distributions of $\text{Re Tr } U$, $\text{Im Tr } U$
Distributions: $\text{Tr } U$

Histograms for different values of μ and $\beta = 0.125$, $h = 0.02$:
- $\mu = 0$, 8^3
- $\mu = 0$, 12^3
- $\mu = 1$, 8^3
- $\mu = 1$, 12^3
- $\mu = 3$, 8^3
- $\mu = 3$, 12^3
Distributions: $\text{Tr } U$

\[\beta=0.125, \ h=0.02 \]

- $\mu = 0, 8^3$
- $\mu = 0, 12^3$
- $\mu = 1, 8^3$
- $\mu = 1, 12^3$
- $\mu = 3, 8^3$
- $\mu = 3, 12^3$
Distributions: ϕ^I

$\beta=0.125$, $h=0.02$

$\mu=0$

$\mu=1$, 8^3

$\mu=1$, 12^3

$\mu=3$, 8^3

$\mu=3$, 12^3

$\sim \exp(-35|\phi^I|)$

$\sim \exp(-45|\phi^I|)$
Decay of ϕ^I

- Decay of $P(\phi^I) \sim e^{-a|\phi^I|}$, with $a \sim 40$
- Rapid decay enough for correct convergence of $O = \text{Tr} \ U$
- Problem for observables of high powers like $\text{Tr} [U^k]$ for $k \gtrsim 40$
- Contributions are like $e^{-k\phi^I} \cos(k\phi^R)$
- These should vanish due to oscillating sign?
- Compare with U(1) one-link model where $a \sim 2$ and complex Langevin failed

Aarts, FJ, Seiler, Stamatescu, 2011
Complex neighbours

• Focus on single lattice site x

$$S = - \sum_x \text{Tr} \, U_x \left(\beta \sum_\nu \left[\text{Tr} \, U^\dagger_{x+\hat{\nu}} + \text{Tr} \, U^\dagger_{x-\hat{\nu}} \right] + h e^\mu \right) +$$

$$\text{Tr} \, U^\dagger_x \left(\beta \sum_\nu \left[\text{Tr} \, U_{x+\hat{\nu}} + \text{Tr} \, U_{x-\hat{\nu}} \right] + h e^{-\mu} \right)$$

• Combine neighbours

$$u_x = \frac{1}{6} \sum_{\nu=1}^3 \text{Tr} \, U^\dagger_{x+\hat{\nu}} + \text{Tr} \, U^\dagger_{x-\hat{\nu}}$$

• Action

$$S = - \sum_x (6 \beta u_x + h e^\mu) \text{Tr} \, U_x + (6 \beta u^*_x + h e^{-\mu}) \text{Tr} \, U^\dagger$$
Effective 1-link model

- Action
 \[S = -\beta_1 \text{Tr} \, U - \beta_2 \text{Tr} \, U^\dagger \]

- Complex parameters
 \[\beta_1 = \beta_{\text{eff}} e^{i\gamma} + h e^\mu, \quad \beta_2 = \beta_{\text{eff}} e^{-i\gamma} + h e^{-\mu} \]

- Couplings related to full model \(\beta_{\text{eff}} e^{i\gamma} = 6\beta u \)

- Write with angles, gain reduced Haar measure
 \[S_H = -\log \left[\sin^2 \left(\frac{\phi_1 - \phi_2}{2} \right) \sin^2 \left(\frac{2\phi_1 + \phi_2}{2} \right) \sin^2 \left(\frac{\phi_1 + 2\phi_2}{2} \right) \right] \]
Results

\[\text{Re} \langle \text{Tr} U \rangle \]

\(\beta=0.5, \mu=1, h=0.02 \)
Results

\[
\text{Re} \langle \text{Tr} \ U \rangle
\]

\[
\gamma
\]

\[
\beta=2.0, \mu=1, h=0.02
\]
Conclusions

- Complex Langevin dynamics is still a candidate for circumventing sign problem
- Criteria provide necessary conditions for correct results
- Improved algorithm eliminates leading order stepsize corrections
- Criteria also provide general method for quantifying stepsize corrections
- SU(3) spin model passes the tests for correct results on both sides of phase diagram
- Effective 1-link model works for all complex parameters
- No dependence on severeness of sign problem and performance of complex Langevin dynamics