At the Intersection of Spin and Saturation Physics
Transverse Spin Asymmetries in p-p and p-A Collisions

Matthew D. Sievert
Advisor: Yuri Kovchegov

Department of Physics
The Ohio State University

October 19, 2011
Outline

1 Introduction
 - Definitions and Background
 - Theoretical Tools
Outline

1. Introduction
 - Definitions and Background
 - Theoretical Tools

2. Our Calculation
 - Light-Cone Wave Function
 - Interactions

M. Sievert and Y. Kovchegov
At The Intersection of Spin and Saturation Physics
Outline

1. Introduction
 - Definitions and Background
 - Theoretical Tools

2. Our Calculation
 - Light-Cone Wave Function
 - Interactions

3. Analysis
 - Preliminary Results
 - Interpretation
Single Transverse Spin Asymmetry - What It Is

An asymmetric distribution is produced when a transversely polarized hadron scatters off an unpolarized target. The asymmetry can be described by the following equation:

$$A_s \equiv \frac{d\sigma (\uparrow) - d\sigma (\downarrow)}{d\sigma (\uparrow) + d\sigma (\downarrow)}$$

Left/right asymmetry and spin up/down asymmetry are equivalent due to rotational invariance.
Single Transverse Spin Asymmetry - What It Is

A\leftarrow\rightarrow\ A

Asymmetric Distribution

Left/right asymmetry and spin up/down asymmetry are equivalent due to rotational invariance.
Single Transverse Spin Asymmetry - What It Is

- Transversely polarized hadron scatters off an unpolarized target, resulting in an asymmetric distribution of detected particles.
Single Transverse Spin Asymmetry - What It Is

- Transversely polarized hadron scatters off an unpolarized target, resulting in an asymmetric distribution of detected particles.

\[A_N \equiv \frac{d\sigma(\uparrow) - d\sigma(\downarrow)}{d\sigma(\uparrow) + d\sigma(\downarrow)} = \frac{d(\Delta\sigma)}{2d\sigma_{unp}} \]
Single Transverse Spin Asymmetry - What It Is

- Transversely polarized hadron scatters off an unpolarized target, resulting in an asymmetric distribution of detected particles.
- $A_N \equiv \frac{d\sigma(\uparrow) - d\sigma(\downarrow)}{d\sigma(\uparrow) + d\sigma(\downarrow)} \equiv \frac{d(\Delta\sigma)}{2d\sigma_{\text{unp}}}$
- Left/right asymmetry and spin up/down asymmetry are equivalent due to rotational invariance.
History and Observation of STSA

Spin effects believed to be negligible at high energies (Kane et al, '78).

STSA first observed in late 70's, interpreted as purely non-perturbative effect.

Fermilab at $\sqrt{s} \approx 20$ GeV (90's) found $A_{NN} \approx 0$ for mid- and backward-rapidities, but large, increasing A_{NN} at forward rapidities.

RHIC at $\sqrt{s} \approx 200$ GeV (00's) confirmed Fermilab's measurements over a wider kinematic range. Observed non-monotonic p_T dependence.
Spin effects believed to be negligible at high energies [Kane et al, ’78].
Spin effects believed to be negligible at high energies [Kane et al, ’78].

STSA first observed in late 70’s, interpreted as purely non-perturbative effect.
Spin effects believed to be negligible at high energies [Kane et al, ’78].
STSA first observed in late 70’s, interpreted as purely non-perturbative effect.
Fermilab at $\sqrt{s} \approx 20\text{GeV}$ (90’s) found $A_N \approx 0$ for mid- and backward-rapidities, but large, increasing A_N at forward rapidities.
Spin effects believed to be negligible at high energies [Kane et al, ’78].

STSA first observed in late 70’s, interpreted as purely non-perturbative effect.

Fermilab at $\sqrt{s} \approx 20\text{GeV}$ (90’s) found $A_N \approx 0$ for mid- and backward-rapidities, but large, increasing A_N at forward rapidities.

RHIC at $\sqrt{s} \approx 200\text{GeV}$ (00’s) confirmed Fermilab’s measurements over a wider kinematic range. Observed non-monotonic p_T dependence.
History and Observation of STSA

[D’Alesio and Murgia, ’08]

\[A_N \times F \rho_T = 1.5 \text{ GeV/c} \]

\[\pi^+ \quad \pi^0 \quad \pi^- \]

\[\rho_T = 1.5 \text{ GeV/c} \]
Introduction

Our Calculation

Analysis

Definitions and Background

Theoretical Tools

History and Observation of STSA

[D’Alesio and Murgia, ’08]

[Wei, ’11] - PHENIX

$A_N = 1.5 \text{ GeV/c}$

$\pi^+ - \pi\pi^0 - \pi^-$

$\sqrt{s} = 200 \text{ GeV}$

Vertical Scale Uncertainty: 4.8%
Possible Mechanisms for Generating STSA
Possible Mechanisms for Generating STSA

- Sivers effect: Asymmetric PDF's of polarized hadrons.
 - Generally non-perturbative. [Sivers, '90]

- Collins effect: Asymmetric FF's of polarized quarks.
 - Generally non-perturbative, and results in asymmetric distribution within a jet. [Collins, '93]
Sivers effect: Asymmetric PDF’s of polarized hadrons. Generally non-perturbative. [Sivers, ’90]
Sivers effect: Asymmetric PDF’s of polarized hadrons. Generally non-perturbative. [Sivers, ’90]

Interactions: Symmetric and asymmetric contributions from hard scattering processes. Generally perturbative.
Possible Mechanisms for Generating STSA

- **Sivers effect**: Asymmetric PDF’s of polarized hadrons. Generally non-perturbative. [Sivers, ’90]
- **Interactions**: Symmetric and asymmetric contributions from hard scattering processes. Generally perturbative.
- **Collins effect**: Asymmetric FF’s of polarized quarks. Generally non-perturbative, and results in asymmetric distribution within a jet. [Collins, ’93]
Recently, the STAR Collaboration re-analyzed 2006, 2008 data to isolate Collins effect. Identify jets and plot azimuthal dependence of particles relative to jet thrust axis. Collins contribution proportional to slope of A_N vs $\cos(\gamma)$.

Collins effect is consistent with zero for π^0 production. [Poljak, '11] - STAR

M. Sievert and Y. Kovchegov

At The Intersection of Spin and Saturation Physics
Recently, the STAR Collaboration re-analyzed 2006, 2008 data to isolate Collins effect.
Recently, the STAR Collaboration re-analyzed 2006, 2008 data to isolate Collins effect.

Identify jets and plot azimuthal dependence of particles relative to jet thrust axis.

Collins contribution proportional to slope of A_N vs $\cos(\gamma)$

Collins effect is consistent with zero for π^0 production.

[Poljak, '11] - STAR

M. Sievert and Y. Kovchegov
At The Intersection of Spin and Saturation Physics
Recently, the STAR Collaboration re-analyzed 2006, 2008 data to isolate Collins effect.

Identify jets and plot azimuthal dependence of particles relative to jet thrust axis.

Collins contribution proportional to slope of A_N vs $\cos(\gamma)$
Recently, the STAR Collaboration re-analyzed 2006, 2008 data to isolate Collins effect.

- Identify jets and plot azimuthal dependence of particles relative to jet thrust axis.
- Collins contribution proportional to slope of A_N vs $\cos(\gamma)$

[Poljak, ’11] - STAR

$p^+p \rightarrow \text{jet}(\pi^0) + X$ at $\sqrt{s}=200$ GeV

M. Sievert and Y. Kovchegov

At The Intersection of Spin and Saturation Physics
Recently, the STAR Collaboration re-analyzed 2006, 2008 data to isolate Collins effect.

- Identify jets and plot azimuthal dependence of particles relative to jet thrust axis.
- Collins contribution proportional to slope of A_N vs $\cos(\gamma)$
- Collins effect is consistent with zero for π^0 production.

$A_N f(\gamma) = \frac{p^{+}p \rightarrow \text{jet}(\pi^0) + X \text{ at } \sqrt{s} = 200 \text{ GeV}}{p^{+}p \rightarrow X}$

[Poljak, ’11] - STAR

M. Sievert and Y. Kovchegov

At The Intersection of Spin and Saturation Physics
representation of this document as if you were reading it naturally:

Collins and Sivers effects: Most analyses use collinear factorization methods, postulating k_T-factorization and including spin (the Generalized Parton Model). This has only been proven in restricted cases.

Interactions: initial-state interactions (ISI) and final-state interactions (FSI) can generate an asymmetry at twist-3 in pp collisions. Specifically, 3-gluon exchange contributes to these operators, with the gluons in the C-even (f_{abc}) or C-odd (d_{abc}) color states. [Ji, '92], [Koike and Yoshida, '11]
Collins and Sivers effects: Most analyses use collinear factorization methods, postulating k_T-factorization and including spin (the Generalized Parton Model). This has only been proven in restricted cases.
Collins and Sivers effects: Most analyses use collinear factorization methods, postulating k_T-factorization and including spin (the Generalized Parton Model). This has only been proven in restricted cases.

Interactions: initial-state interactions (ISI) and final-state interactions (FSI) can generate an asymmetry at twist-3 in pp collisions.
Collins and Sivers effects: Most analyses use collinear factorization methods, postulating k_T-factorization and including spin (the Generalized Parton Model). This has only been proven in restricted cases.

Interactions: initial-state interactions (ISI) and final-state interactions (FSI) can generate an asymmetry at twist-3 in pp collisions.

Specifically, 3-gluon exchange contributes to these operators, with the gluons in the C-even (f^{abc}) or C-odd (d^{abc}) color states. [Ji, ’92], [Koike and Yoshida, ’11]
Use light-cone perturbation theory (instead of collinear factorization) to calculate light-cone wave function of projectile in transverse coordinate space.

Re-sum the parameter $\alpha_s^2 A_1^2/3$, corresponding to 2-gluon exchange (Pomeron-type interactions).

Projectile scatters off of classical gluon field of the target.

Color-charge density fluctuations generate saturation scale $Q_s^2 \sim \alpha_s^2 A_1^2/3$ that acts as an IR cutoff.

At high enough energies that recoil can be neglected, quark and gluon propagators become Wilson lines.

Easy to incorporate small-x evolution into the light-cone wave function.

M. Sievert and Y. Kovchegov

At The Intersection of Spin and Saturation Physics
Use light-cone perturbation theory (instead of collinear factorization) to calculate light-cone wave function of projectile in transverse coordinate space.
Saturation Formalism

- Use light-cone perturbation theory (instead of collinear factorization) to calculate light-cone wave function of projectile in transverse coordinate space.
- Re-sum the parameter $\alpha_s^2 A^{1/3}$, corresponding to 2-gluon exchange (Pomeron-type interactions).
Use **light-cone perturbation theory** (instead of collinear factorization) to calculate light-cone wave function of projectile in **transverse coordinate space**.

Re-sum the parameter $\alpha_s^2 A^{1/3}$, corresponding to 2-gluon exchange (Pomeron-type interactions).

 Projectile scatters off of **classical gluon field** of the target.
Use light-cone perturbation theory (instead of collinear factorization) to calculate light-cone wave function of projectile in transverse coordinate space.

Re-sum the parameter $\alpha_s^2 A^{1/3}$, corresponding to 2-gluon exchange (Pomeron-type interactions).

Projectile scatters off of classical gluon field of the target.

Color-charge density fluctuations generate saturation scale $Q_s^2 \sim \alpha_s^2 A^{1/3}$ that acts as an IR cutoff.
Saturation Formalism

- Use light-cone perturbation theory (instead of collinear factorization) to calculate light-cone wave function of projectile in transverse coordinate space.
- Re-sum the parameter $\alpha_s^2 A^{1/3}$, corresponding to 2-gluon exchange (Pomeron-type interactions).
- Projectile scatters off of classical gluon field of the target.
- Color-charge density fluctuations generate saturation scale $Q_s^2 \sim \alpha_s^2 A^{1/3}$ that acts as an IR cutoff.
- At high enough energies that recoil can be neglected, quark and gluon propagators become Wilson lines.
Use light-cone perturbation theory (instead of collinear factorization) to calculate light-cone wave function of projectile in transverse coordinate space.

Re-sum the parameter $\alpha_s^2 A^{1/3}$, corresponding to 2-gluon exchange (Pomeron-type interactions).

Projectile scatters off of classical gluon field of the target.

Color-charge density fluctuations generate saturation scale $Q_s^2 \sim \alpha_s^2 A^{1/3}$ that acts as an IR cutoff.

At high enough energies that recoil can be neglected, quark and gluon propagators become Wilson lines.

Easy to incorporate small-x evolution into the light-cone wave function.
The Plan of Attack: Putting Them Together

Calculate one non-eikonal gluon emission in the wave function to capture lowest-order spin-dependence. For eikonal kinematics, use Wilson lines to describe ISI/FSI. Identify the specific coupling of parts of the wave function to parts of the interaction which generate STSA. Comment on generalization to pA scattering (A-dependence).

Quark longitudinal fraction $\alpha \equiv \frac{k^+ + p^+}{M}$

Modified mass $\tilde{m} \equiv (1 - \alpha)m$
The Plan of Attack: Putting Them Together

- Calculate one **non-eikonal gluon emission** in the wave function to capture lowest-order spin-dependence.
Calculate one non-eikonal gluon emission in the wave function to capture lowest-order spin-dependence.
Calculate one non-eikonal gluon emission in the wave function to capture lowest-order spin-dependence.

For eikonal kinematics, use Wilson lines to describe ISI/FSI.
The Plan of Attack: Putting Them Together

- Calculate one non-eikonal gluon emission in the wave function to capture lowest-order spin-dependence.
- For eikonal kinematics, use Wilson lines to describe ISI/FSI.
- Identify the specific coupling of parts of the wave function to parts of the interaction which generate STSA.
The Plan of Attack: Putting Them Together

- Calculate one non-eikonal gluon emission in the wave function to capture lowest-order spin-dependence.
- For eikonal kinematics, use Wilson lines to describe ISI/FSI.
- Identify the specific coupling of parts of the wave function to parts of the interaction which generate STSA.
- Comment on generalization to pA scattering (A-dependence)
Calculate one non-eikonal gluon emission in the wave function to capture lowest-order spin-dependence.

For eikonal kinematics, use Wilson lines to describe ISI/FSI.

Identify the specific coupling of parts of the wave function to parts of the interaction which generate STSA.

Comment on generalization to pA scattering (A-dependence).

Quark longitudinal fraction $\alpha \equiv \frac{k^+}{p^+}$
The Plan of Attack: Putting Them Together

- Calculate one **non-eikonal gluon emission** in the wave function to capture lowest-order spin-dependence.
- For eikonal kinematics, use **Wilson lines** to describe ISI/FSI.
- Identify the specific coupling of parts of the wave function to parts of the interaction which generate STSA.
- Comment on generalization to pA scattering (A-dependence)

- **Quark longitudinal fraction** \(\alpha \equiv \frac{k^+}{p^+} \)
- **Modified mass** \(\tilde{m} \equiv (1 - \alpha)m \)
Light-Cone Wave Function: Non-Eikonal Emission

Initial state: quark spin $\chi = \pm 1$ polarized along x-axis.

$U\chi \equiv \frac{1}{\sqrt{2}}(U^{+}(z) - \chi U^{-}(z))$

Defined by the Pauli-Lubanski covariant spin 4-vector $W^{\mu} \equiv \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} \Sigma_{\nu\rho} p_{\sigma}$

Initial-state spinors are eigenvectors of $W^{(1)}$:

$W^{(1)} U\chi = \chi m_{2} U\chi$

Splitting wave function $\Phi_{\lambda\chi} = \int d^{2}k (2\pi)^{2} d^{2}p (2\pi)^{2} e^{ik \cdot (z-x)} e^{ip \cdot (x-u)} g_{T}^{a} p_{\gamma} \bar{U}\chi'(k) \sqrt{k} + \gamma \cdot \epsilon(\lambda) U\chi(p) \sqrt{p}$
Initial state: quark spin $\chi = \pm 1$ polarized along $x^{(1)}$-axis.

$$U_\chi \equiv \frac{1}{\sqrt{2}} (U_{+z} - \chi U_{-z})$$
Initial state: quark spin \(\chi = \pm 1 \) polarized along \(x^{(1)} \)-axis.
\[
U_\chi \equiv \frac{1}{\sqrt{2}} (U_{+z} - \chi U_{-z})
\]
Defined by the Pauli-Lubanski covariant spin 4-vector
\[
W_\mu \equiv \frac{1}{2} \epsilon_{\mu \nu \rho \sigma} \Sigma^{\nu \rho} p^\sigma
\]
Light-Cone Wave Function: Non-Eikonal Emission

- Initial state: quark spin $\chi = \pm 1$ polarized along $x^{(1)}$-axis.

 $U_\chi \equiv \frac{1}{\sqrt{2}} (U_{+z} - \chi U_{-z})$

- Defined by the Pauli-Lubanski covariant spin 4-vector

 $W_\mu \equiv \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} \Sigma^{\nu\rho} p^\sigma$

- Initial-state spinors are eigenvectors of $W_{(1)}$: $W_{(1)} U_\chi = \chi \frac{m}{2} U_\chi$
Initial state: quark spin $\chi = \pm 1$ polarized along $x^{(1)}$-axis.

\[U_\chi \equiv \frac{1}{\sqrt{2}} (U(+z) - \chi U(-z)) \]

Defined by the Pauli-Lubanski covariant spin 4-vector

\[W_\mu \equiv \frac{1}{2} \epsilon_{\mu \nu \rho \sigma} \Sigma^{\nu \rho} p^\sigma \]

Initial-state spinors are eigenvectors of $W_{(1)}$:

\[W_{(1)} U_\chi = \chi \frac{m}{2} U_\chi \]
Light-Cone Wave Function: Non-Eikonal Emission

- **Initial state:** quark spin $\chi = \pm 1$ polarized along $x^{(1)}$-axis.

 \[U_\chi \equiv \frac{1}{\sqrt{2}} (U_{+z} - \chi U_{-z}) \]

- Defined by the Pauli-Lubanski covariant spin 4-vector

 \[W_\mu \equiv \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} \Sigma^{\nu\rho} p^\sigma \]

- Initial-state spinors are eigenvectors of $W_{(1)}$:

 \[W_{(1)} U_\chi = \chi \frac{m}{2} U_\chi \]

- **Splitting wave function** $\Phi_{\lambda\chi\chi'}$

\[
\Phi_{\lambda\chi\chi'}(z-x) T^a \delta^2 [x - u + \alpha (z - x)] = \\
\int \frac{d^2 k}{(2\pi)^2} \frac{d^2 p}{(2\pi)^2} \ e^{ik \cdot (z-x)} e^{ip \cdot (x-u)} \ gT^a \frac{\bar{U}_{\chi'}(k)}{\sqrt{k^+}} \frac{\sqrt{p^+}}{(\gamma \cdot \epsilon(\lambda))} U_{\chi}(p)
\]
Light-Cone Wave Function: Non-Eikonal Emission

Direct evaluation of splitting wave function gives:

$$\Phi_{\lambda \chi \chi'}(z-x) = i \epsilon(\lambda) \cdot (z-x) |z-x| \tilde{m} K_1(\tilde{m} |z-x|) \left[(1+\alpha) \delta \chi \chi' - \lambda (1-\alpha) \delta \bar{\chi}, \chi \right] + (1-\alpha) \chi \sqrt{2} \tilde{m} K_0(\tilde{m} |z-x|) \left[\delta \chi \chi' + \lambda \delta \bar{\chi}, \chi \right]$$

Transverse wave function mixes the longitudinal same-spin (K_1) and spin-flip (K_0) terms. Note vector structure of the two terms. Entire splitting function is proportional to the quark mass: a consequence of not being in a pure helicity state.

M. Sievert and Y. Kovchegov
At The Intersection of Spin and Saturation Physics
Direct evaluation of splitting wave function gives:

\[\Phi_{\lambda \chi \chi'}(z - x) = \]

\[i \frac{\epsilon^{(\lambda)} \cdot (z - x)}{|z - x|} \tilde{m} K_1 (\tilde{m}|z - x|) \left[(1 + \alpha) \delta_{\chi \chi'} - \lambda (1 - \alpha) \delta_{\chi, -\chi'} \right] \]

\[+ \frac{(1 - \alpha)\chi}{\sqrt{2}} \tilde{m} K_0 (\tilde{m}|z - x|) \left[\delta_{\chi \chi'} + \lambda \delta_{\chi, -\chi'} \right] \]
Direct evaluation of splitting wave function gives:

\[
\Phi_{\lambda\chi\chi'}(z - x) = \\
\int \frac{\epsilon(\lambda) \cdot \hat{m}}{|z - x|} \tilde{m} \, K_1 \left(\tilde{m}|z - x| \right) \left[(1 + \alpha)\delta_{\chi\chi'} - \lambda(1 - \alpha)\delta_{\chi,-\chi'} \right] \\
\int \frac{(1 - \alpha)\chi}{\sqrt{2}} \, \tilde{m} \, K_0 \left(\tilde{m}|z - x| \right) \left[\delta_{\chi\chi'} + \lambda\delta_{\chi,-\chi'} \right]
\]

Transverse wave function mixes the longitudinal same-spin \((K_1)\) and spin-flip \((K_0)\) terms.
Direct evaluation of splitting wave function gives:

$$\Phi_{\lambda\chi\chi'}(z - x) =$$

$$i \frac{\epsilon^{(\lambda)} \cdot (z-x)}{|z-x|} \tilde{m} K_1 \left(\tilde{m} |z - x| \right) \left[(1 + \alpha)\delta_{\chi\chi'} - \lambda (1 - \alpha)\delta_{\chi,-\chi'} \right]$$

$$+ \frac{(1-\alpha)\chi}{\sqrt{2}} \tilde{m} K_0 \left(\tilde{m} |z - x| \right) \left[\delta_{\chi\chi'} + \lambda \delta_{\chi,-\chi'} \right]$$

Transverse wave function mixes the longitudinal same-spin (K_1) and spin-flip (K_0) terms.

Note vector structure of the two terms.
Direct evaluation of splitting wave function gives:

\[\Phi_{\lambda\gamma\gamma'}(z - x) = \]
\[i^{\frac{\epsilon(\lambda) \cdot (z-x)}{|z-x|}} \tilde{m} K_1 \left(\tilde{m} |z - x| \right) \left[(1 + \alpha) \delta_{\gamma\gamma'} - \lambda(1 - \alpha) \delta_{\gamma,-\gamma'} \right] \]
\[+ \frac{(1 - \alpha)x}{\sqrt{2}} \tilde{m} K_0 \left(\tilde{m} |z - x| \right) \left[\delta_{\gamma\gamma'} + \lambda \delta_{\gamma,-\gamma'} \right] \]

Transverse wave function mixes the longitudinal same-spin \((K_1)\) and spin-flip \((K_0)\) terms.

Note vector structure of the two terms.

Entire splitting function is proportional to the quark mass: a consequence of not being in a pure helicity state.
Interactions: Eikonal Rescattering
Interactions: Eikonal Rescattering

- Work in $A^+ = 0$ light-cone gauge of the projectile. Gauge links at infinity become 1.
Interactions: Eikonal Rescattering

- Work in $A^+ = 0$ light-cone gauge of the projectile. Gauge links at infinity become 1.

- Consider scattering before or after splitting; emission during scattering is suppressed by powers of CMS energy.
Interactions: Eikonal Rescattering

- Work in $A^+ = 0$ light-cone gauge of the projectile. Gauge links at infinity become 1.
- Consider scattering before or after splitting; emission during scattering is suppressed by powers of CMS energy.
Work in $A^+ = 0$ light-cone gauge of the projectile. Gauge links at infinity become 1.

Consider scattering before or after splitting; emission during scattering is suppressed by powers of CMS energy.

Represent eikonal scattering with Wilson lines

$$V_{\mathbf{x}} = \mathcal{P} \exp \left[-i g \int dx^+ T^a A^a_{-(x, x^+, b)} \right]$$
Interactions: Eikonal Rescattering

\[\langle \psi_2 \rangle_{\text{int}} = \delta^2 \left[u - \alpha z - (1 - \alpha) x \right] \delta^2 \left[w - \alpha y - (1 - \alpha) x \right] \langle \Phi_2 \chi \rangle (z - x, y - x) I(x, y, z, u, w, b) \]

Splitting wave function:

\[\langle \Phi_2 \chi \rangle = 2 \alpha s \pi \tilde{m}^2 \left[(1 + \alpha^2) (z - x) \cdot (y - x) \middle| z - x \middle| \right| y - x \middle| K_1(\tilde{m} | z - x |) K_1(\tilde{m} | y - x |) + (1 - \alpha)^2 K_0(\tilde{m} | z - x |) K_0(\tilde{m} | y - x |) - \chi_\alpha (1 - \alpha) (z_2 - x_2) | z - x | K_0(\tilde{m} | y - x |) K_1(\tilde{m} | z - x |) + y_2 | y - x | K_1(\tilde{m} | y - x |) K_0(\tilde{m} | z - x |)) \]
Interactions: Eikonal Rescattering

Splitting + Scattering:
\[
\langle \psi_{\text{int}}^2 \rangle = \delta^2 [u - \alpha z - (1 - \alpha) x] \delta^2 [w - \alpha y - (1 - \alpha) x] \times \\
\times \langle \Phi^2 \rangle (z - x, y - x) I(x, y, z, u, w, b)
\]
Interactions: Eikonal Rescattering

- **Splitting + Scattering:**
 \[
 \langle \psi_{\text{int}}^2 \rangle = \delta^2[u - \alpha z - (1 - \alpha)x] \delta^2[w - \alpha y - (1 - \alpha)x] \times \langle \Phi^2 \rangle (z - x, y - x) \mathcal{I}(x, y, z, u, w, b)
 \]

- **Splitting wave function:**
 \[
 \langle \Phi^2 \rangle = \frac{2\alpha_s}{\pi} \tilde{m}^2 \left[(1 + \alpha^2) \frac{(z-x) \cdot (y-x)}{|z-x||y-x|} K_1(\tilde{m}|z - x|) K_1(\tilde{m}|y - x|) + (1 - \alpha)^2 K_0(\tilde{m}|z - x|) K_0(\tilde{m}|y - x|) - \chi \alpha (1 - \alpha) \left(\frac{z^{(2)} - x^{(2)}}{|z-x|} K_0(\tilde{m}|y - x|) K_1(\tilde{m}|z - x|) + \frac{y^{(2)} - x^{(2)}}{|y-x|} K_1(\tilde{m}|y - x|) K_0(\tilde{m}|z - x|) \right) \right]
 \]
Interactions: Eikonal Rescattering
Interaction:

\[\mathcal{I}(x, y, z, u, w, b) = \]

\[\frac{C_F}{N_c} \text{Tr}(V_z V_y^\dagger + V_u V_w^\dagger) - \frac{1}{2N_c} \left[\text{Tr}(V_z V_x^\dagger) \text{Tr}(V_x V_w^\dagger) + \text{Tr}(V_u V_x^\dagger) \text{Tr}(V_x V_y^\dagger) \right] + \frac{1}{2N_c^2} \text{Tr}(V_z V_w^\dagger + V_u V_y^\dagger) \]
Interaction:

\[\mathcal{I}(x, y, z, u, w, b) = \]
\[\frac{C_F}{N_c} \text{Tr}(V_z V_y^\dagger + V_u V_w^\dagger) - \frac{1}{2N_c} \left[\text{Tr}(V_z V_x^\dagger)\text{Tr}(V_x V_w^\dagger) + \text{Tr}(V_u V_x^\dagger)\text{Tr}(V_x V_y^\dagger) \right] + \frac{1}{2N_c^2} \text{Tr}(V_z V_w^\dagger + V_u V_y^\dagger) \]

Contribution to cross section:

\[\frac{d\sigma}{d^2k \, dy} = \]
\[\frac{1}{2(2\pi)^3} \frac{\alpha}{1-\alpha} \int d^2x d^2y d^2z \int d^2u d^2w \, e^{-ik \cdot (z-y)} e^{ip \cdot (u-w)} \langle \psi_{\text{int}}^2 \rangle \]
Interactions: Eikonal Rescattering

Interaction:

\[
\mathcal{I}(x, y, z, u, w, b) = C_F \frac{N_c}{N_c} \text{Tr}(V_z V_y^\dagger + V_u V_w^\dagger) - \frac{1}{2N_c} \left[\text{Tr}(V_z V_x^\dagger) \text{Tr}(V_x V_w^\dagger) + \text{Tr}(V_u V_x^\dagger) \text{Tr}(V_x V_y^\dagger) \right] + \frac{1}{2N_c^2} \text{Tr}(V_z V_w^\dagger + V_u V_y^\dagger)
\]

Contribution to cross section:

\[
\frac{d\sigma}{d^2k \ dy} = \frac{1}{2(2\pi)^3} \frac{\alpha}{1-\alpha} \int d^2x d^2y d^2z \int d^2u d^2w \ e^{-ik \cdot (z-y)} e^{ip \cdot (u-w)} \langle \psi_{int}^2 \rangle
\]

Need to reorganize into manageable pieces.
Symmetry and Antisymmetry: k_T-Parity

Separate the interaction by its k_T-parity (left/right asymmetry) and the wave function by its spin dependence:

$$\langle \Phi_2 \chi \rangle = \Phi_2^\text{unp} + \chi \Phi_2^\text{pol}$$

Both parts of the wave function Φ_2^unp and Φ_2^pol are even under $k \rightarrow -k$.

By rotational invariance, $k \rightarrow -k$ and $\chi \rightarrow -\chi$ should give the same asymmetry. After averaging over impact parameters $d^2 b$, rotationally non-invariant terms vanish (vector structure vs. k_T-parity):

$$\Phi_2^\text{pol} I^\text{symm} = 0$$

$$\Phi_2^\text{unp} I^\text{anti} = 0$$
Symmetry and Antisymmetry: k_T-Parity

Separate the interaction by its k_T – parity (left/right asymmetry) and the wave function by its spin dependence:

\[\mathcal{I} = \mathcal{I}_{\text{symm}} + i\mathcal{I}_{\text{anti}} \]

\[\langle \Phi^2 \rangle = \Phi^2_{\text{unp}} + \chi \Phi^2_{\text{pol}} \]
Separate the interaction by its k_T-parity (left/right asymmetry) and the wave function by its spin dependence:

$$I = I_{symm} + iI_{anti}$$

$$\langle \Phi^2 \chi \rangle = \Phi^2_{unp} + \chi \Phi^2_{pol}$$

Both parts of the wave function Φ^2_{unp} and Φ^2_{pol} are even under $k \rightarrow -k$.
Symmetry and Antisymmetry: k_T-Parity

- Separate the interaction by its k_T-parity (left/right asymmetry) and the wave function by its spin dependence:
 \[I = I_{symm} + iI_{anti} \]
 \[\langle \Phi^2 \chi \rangle = \Phi^2_{unp} + \chi \Phi^2_{pol} \]

- Both parts of the wave function Φ^2_{unp} and Φ^2_{pol} are even under $k \rightarrow -k$.

- By rotational invariance, $k \rightarrow -k$ and $\chi \rightarrow -\chi$ should give the same asymmetry.
Symmetry and Antisymmetry: k_T-Parity

Separate the interaction by its k_T – parity (left/right asymmetry) and the wave function by its spin dependence:

\[I = I_{symm} + iI_{anti} \]

\[\langle \Phi^2 \rangle = \Phi^2_{unp} + \chi \Phi^2_{pol} \]

Both parts of the wave function Φ^2_{unp} and Φ^2_{pol} are even under $k \rightarrow -k$.

By rotational invariance, $k \rightarrow -k$ and $\chi \rightarrow -\chi$ should give the same asymmetry.

After averaging over impact parameters d^2b, rotationally non-invariant terms vanish (vector structure vs. k_T-parity):

\[\Phi^2_{pol} I_{symm} = 0 \]

\[\Phi^2_{unp} I_{anti} = 0 \]
Symmetry and Antisymmetry: k_T-Parity

Contributions to the STSA come from the spin-dependent part of the wave function Φ^2_{pol} coupling to the antisymmetric part of the interaction I_{anti}.

$$d(\Delta \sigma) = -\chi_\alpha S_8 \pi^4 \alpha^2 \tilde{m} \int d^2x d^2y d^2z e^{-i(k - \alpha p) \cdot (z - y)} \times \left[(\partial_\partial z (2) + \partial_\partial y (2)) K_0(\tilde{m} | y - x |) K_0(\tilde{m} | z - x |) \right] i I_{\text{anti}}(x, y, z, b)$$

Explicitly separate each trace into a symmetric piece S_{xy} (the Pomeron) and an antisymmetric piece O_{xy} (the Odderon):

$$i I_{\text{anti}} = C_F (iO_{zy} + iO_{uw}) + N_c (iO_{yx} S_{xu} + iO_{xu} S_{yx} + iO_{wx} S_{xz} + iO_{xz} S_{wx}) + \frac{1}{N_c} (iO_{zw} + iO_{uy})$$
Symmetry and Antisymmetry: k_T-Parity

Contributions to the STSA come from the spin-dependent part of the wave function ϕ_{pol}^2 coupling to the antisymmetric part of the interaction I_{anti}.
Contributions to the STSA come from the spin-dependent part of the wave function ϕ^2_{pol} coupling to the antisymmetric part of the interaction I_{anti}.

\[
d(\Delta \sigma) = -\frac{\chi \alpha_s}{8\pi^4} \frac{\alpha^2}{m} \int d^2x d^2y d^2z \, e^{-i(k-\alpha p)\cdot(z-y)} \times
\left[\left(\frac{\partial}{\partial z^{(2)}} + \frac{\partial}{\partial y^{(2)}} \right) K_0(\tilde{m}|y - x|) K_0(\tilde{m}|z - x|) \right] iI_{anti}(x, y, z, b)
\]
Contributions to the STSA come from the spin-dependent part of the wave function Φ^2_{pol} coupling to the antisymmetric part of the interaction \mathcal{I}_{anti}.

$$d(\Delta \sigma) = \frac{-\chi \alpha_s \alpha^2}{8\pi^4} \frac{1}{\tilde{m}} \int d^2x d^2y d^2z \ e^{-i(k - \alpha p) \cdot (z - y)} \times \left[\left(\frac{\partial}{\partial z^{(2)}} + \frac{\partial}{\partial y^{(2)}} \right) K_0 \left(\tilde{m} |y - x| \right) K_0 \left(\tilde{m} |z - x| \right) \right] i\mathcal{I}_{anti}(x, y, z, b)$$

Explicitly separate each trace into a symmetric piece S_{xy} (the Pomeron) and an antisymmetric piece O_{xy} (the Odderon):

$$i\mathcal{I}_{anti} = C_F(iO_{zy} + iO_{uw}) + N_c(iO_{yx}S_{xu} + iO_{xu}S_{yx} + \frac{1}{N_c}(iO_{zw} + iO_{uy}))$$
The Emerging Picture

The transverse wave function has definite k_T-parity and happens to be completely even. Consequently, Φ_2^{pol} couples to I_{anti} to generate the STSA. Couples the Odderon O_{xy} to an experimental observable, potentially allowing its first direct measurement! Nonlinear terms include both Odderon exchange and Pomeron exchange. At minimum, need one non-eikonal vertex (emission here) to generate STSA. Hence $A_N \propto m$. (ISI2) and (FSI$_2$) contribute to $d\sigma_{unp}$. Only (ISI/FSI) interference terms generate the relative phase needed for STSA. M. Sievert and Y. Kovchegov
The transverse wave function has definite k_T-parity and happens to be completely even.
The transverse wave function has definite k_T-parity and happens to be completely even.

Consequently, Φ^2_{pol} couples to \mathcal{I}_{anti} to generate the STSA.
The transverse wave function has definite k_T-parity and happens to be completely even. Consequently, Φ^{2}_{pol} couples to I_{anti} to generate the STSA. Couples the Odderon O_{xy} to an experimental observable, potentially allowing its first direct measurement!
The transverse wave function has definite k_T-parity and happens to be completely even.

Consequently, Φ^2_{pol} couples to I_{anti} to generate the STSA.

Couples the Odderon O_{xy} to an experimental observable, potentially allowing its first direct measurement!

Nonlinear terms include both Odderon exchange and Pomeron exchange.
The Emerging Picture

- The transverse wave function has definite k_T-parity and happens to be completely even.
- Consequently, Φ^2_{pol} couples to I_{anti} to generate the STSA.
- Couples the Odderon O_{xy} to an experimental observable, potentially allowing its first direct measurement!
- Nonlinear terms include both Odderon exchange and Pomeron exchange.
- At minimum, need one non-eikonal vertex (emission here) to generate STSA. Hence $A_N \propto m$.
The transverse wave function has definite k_T-parity and happens to be completely even.

Consequently, Φ^2_{pol} couples to I_{anti} to generate the STSA.

Couples the Odderon O_{xy} to an experimental observable, potentially allowing its first direct measurement!

Nonlinear terms include both Odderon exchange and Pomeron exchange.

At minimum, need one non-eikonal vertex (emission here) to generate STSA. Hence $A_N \propto m$.

$(\text{ISI})^2$ and $(\text{FSI})^2$ contribute to $d\sigma_{unp}$. Only (ISI/FSI) interference terms generate the relative phase needed for STSA.
How Not to Generate STSA

A first approximation: linearize the interaction, e.g.,

\[\sigma_x \approx \sigma_y. \]

Compute contributions to \(\Delta \sigma \), integrating over all transverse coordinates. But this gives a STSA that is identically zero! Terms related by \(k_T \)-parity cancel, and the other terms vanish explicitly. Why does this happen? Extending transverse coordinates to infinity effectively makes the transverse size of the target infinite. This introduces translational invariance into the scattering, which automatically kills any asymmetry. To generate any asymmetry from the interaction, finite size effects must be incorporated.
A first approximation: linearize the interaction, e.g. $O_{yx} S_{xu} \approx O_{yx}$.
How *Not* to Generate STSA

- A first approximation: linearize the interaction, e.g. $O_{yx} S_{xu} \approx O_{yx}$.
- Compute contributions to $d(\Delta \sigma)$, integrating over all transverse coordinates.
How *Not* to Generate STSA

- A first approximation: linearize the interaction, e.g. $O_{yx} S_{xu} \approx O_{yx}$.
- Compute contributions to $d(\Delta \sigma)$, integrating over all transverse coordinates.
- But this gives a STSA that is *identically zero*! Terms related by k_T-parity cancel, and the other terms vanish explicitly.
How *Not* to Generate STSA

- A first approximation: *linearize the interaction*, e.g. \(O_{yx} S_{xu} \approx O_{yx} \).
- Compute contributions to \(d(\Delta\sigma) \), integrating over all transverse coordinates.
- But this gives a STSA that is *identically zero*! Terms related by \(k_T \)-parity cancel, and the other terms vanish explicitly.
- Why does this happen? Extending transverse coordinates to infinity *effectively makes the transverse size of the target infinite.*
How *Not* to Generate STSA

- A first approximation: linearize the interaction, e.g. $O_{yx} S_{xu} \approx O_{yx}$.
- Compute contributions to $d(\Delta \sigma)$, integrating over all transverse coordinates.
- But this gives a STSA that is *identically zero*! Terms related by k_T-parity cancel, and the other terms vanish explicitly.
- Why does this happen? Extending transverse coordinates to infinity effectively makes the transverse size of the target infinite.
- This introduces *translational invariance* into the scattering, which automatically kills any asymmetry.
How Not to Generate STSA

- A first approximation: linearize the interaction, e.g. $O_{yx} S_{xu} \approx O_{yx}$.
- Compute contributions to $d(\Delta \sigma)$, integrating over all transverse coordinates.
- But this gives a STSA that is identically zero! Terms related by k_T-parity cancel, and the other terms vanish explicitly.
- Why does this happen? Extending transverse coordinates to infinity effectively makes the transverse size of the target infinite.
- This introduces translational invariance into the scattering, which automatically kills any asymmetry.
- To generate any asymmetry from the interaction, finite size effects must be incorporated.
Sources of STSA (Preliminary Estimates)

Incomplete cancellation of the linear terms due to finite size effects, e.g. a crude cutoff $\Theta(R - |x - b|)$.

Contributions come from exponential tails of the Bessel functions; STSA is highly suppressed as the nuclear radius increases: $A_N \sim \alpha S e^{-mR} \sim \alpha S e^{-\left(A_1/3\right)}$.

For pp collisions where $e^{-mR} \sim O(1)$, $A_N \sim \alpha S$, but exponential suppression rapidly kills edge effects beyond pp.

Nonlinear terms (Odderon + Pomeron) that couple to gradients of the nuclear profile $\nabla T(b)$:

$A_N \sim \alpha^3 S A_1/3$

More suppressed overall, but with weaker dependence on A.

Incomplete cancellation of the linear terms due to finite size effects, e.g. a crude cutoff $\Theta(R - |x - b|)$.
Incomplete cancellation of the linear terms due to finite size effects, e.g. a crude cutoff $\Theta(R - |x - b|)$.

Contributions come from exponential tails of the Bessel functions; STSA is highly suppressed as the nuclear radius increases: $A_N \sim \alpha_S e^{-mR} \sim \alpha_S e^{-(A^{1/3})}$.

For pp collisions where $e^{-mR} \sim O(1)$, $A_N \sim \alpha_S$, but exponential suppression rapidly kills edge effects beyond pp.

Nonlinear terms (Odderon + Pomeron) that couple to gradients of the nuclear profile $\nabla T(b)$:

$A_N \sim \alpha S^{A_{1/3}}$.

More suppressed overall, but with weaker dependence on A.

M. Sievert and Y. Kovchegov

At The Intersection of Spin and Saturation Physics
Incomplete cancellation of the linear terms due to finite size effects, e.g. a crude cutoff $\Theta(R - |x - b|)$.

Contributions come from exponential tails of the Bessel functions; STSA is highly suppressed as the nuclear radius increases: $A_N \sim \alpha_S e^{-mR} \sim \alpha_S e^{-(\Lambda^{1/3})}$.

For pp collisions where $e^{-mR} \sim O(1)$, $A_N \sim \alpha_S$, but exponential suppression rapidly kills edge effects beyond pp.
Sources of STSA (Preliminary Estimates)

- **Incomplete cancellation of the linear terms** due to finite size effects, e.g. a crude cutoff $\Theta(R - |x - b|)$.

- Contributions come from exponential tails of the Bessel functions; STSA is highly suppressed as the nuclear radius increases: $A_N \sim \alpha_S e^{-mR} \sim \alpha_S e^{-A^{1/3}}$.

- For pp collisions where $e^{-mR} \sim O(1)$, $A_N \sim \alpha_S$, but exponential suppression rapidly kills edge effects beyond pp.

- **Nonlinear terms** (Odderon + Pomeron) that couple to gradients of the nuclear profile $\nabla T(b)$: $A_N \sim \frac{\alpha_S^3}{A^{1/3}}$.
Sources of STSA (Preliminary Estimates)

- **Incomplete cancellation of the linear terms** due to finite size effects, e.g. a crude cutoff $\Theta(R - |x - b|)$.

- Contributions come from exponential tails of the Bessel functions; STSA is highly suppressed as the nuclear radius increases: $A_N \sim \alpha_S e^{-mR} \sim \alpha_S e^{-(A^{1/3})}$.

- For pp collisions where $e^{-mR} \sim O(1)$, $A_N \sim \alpha_S$, but exponential suppression rapidly kills edge effects beyond pp.

- **Nonlinear terms** (Odderon + Pomeron) that couple to gradients of the nuclear profile $\nabla T(b)$: $A_N \sim \frac{\alpha_3^3}{A^{1/3}}$.

- More suppressed overall, but with weaker dependence on A.

\[M. \text{Sievert and Y. Kovchegov} \]

\[\text{At The Intersection of Spin and Saturation Physics} \]
Strengths and Weaknesses of Our Method

Strengths

LCPT allows a direct calculation from first principles, without needing to assume a non-perturbative ansatz.

The kinematic factor \(\alpha_1 - \alpha_2 \) in \(d(\Delta \sigma) g \) gives an asymmetry that increases at forward rapidities, but is small at mid- and backward rapidities.

Compatibility with saturation allows analysis of both pp and pA scattering within the same formalism.

Reveals an experimental connection to the elusive Odderon.

Qualitatively, we expect a crossover between the edge effects and the nonlinear effects generating STSA at some value of \(A \).
Strengths and Weaknesses of Our Method

Strengths

- LCPT allows a **direct calculation from first principles**, without needing to assume a non-perturbative ansatz.
Strengths and Weaknesses of Our Method

Strengths

- LCPT allows a **direct calculation from first principles**, without needing to assume a non-perturbative ansatz.
- The kinematic factor $\frac{\alpha}{1-\alpha}$ in $d(\Delta \sigma)$ gives an **asymmetry that increases at forward rapidities**, but is small at mid- and backward rapidities.

M. Sievert and Y. Kovchegov
At The Intersection of Spin and Saturation Physics
Strengths and Weaknesses of Our Method

Strengths

- LCPT allows a **direct calculation from first principles**, without needing to assume a non-perturbative ansatz.

- The kinematic factor $\frac{\alpha}{1-\alpha}$ in $d(\Delta \sigma)$ gives an **asymmetry** that increases at forward rapidities, but is small at mid-and backward rapidities.

- **Compatibility with saturation** allows analysis of both pp and pA scattering within the same formalism.
Strengths and Weaknesses of Our Method

Strengths

- LCPT allows a **direct calculation from first principles**, without needing to assume a non-perturbative ansatz.
- The kinematic factor $\frac{\alpha}{1-\alpha}$ in $d(\Delta \sigma)$ gives an **asymmetry** that increases at forward rapidities, but is small at mid- and backward rapidities.
- **Compatibility with saturation** allows analysis of both pp and pA scattering within the same formalism.
- Reveals an **experimental connection to the elusive Odderon**.
Strengths

- LCPT allows a **direct calculation from first principles**, without needing to assume a non-perturbative ansatz.
- The kinematic factor $\frac{\alpha}{1-\alpha}$ in $d(\Delta \sigma)$ gives an **asymmetry** that increases at **forward rapidities**, but is small at mid-and **backward rapidities**.
- **Compatibility with saturation** allows analysis of both pp and pA scattering within the same formalism.
- Reveals an **experimental connection to the elusive Odderon**.
- Qualitatively, we expect a **crossover** between the edge effects and the nonlinear effects generating STSA at some value of A.

At The Intersection of Spin and Saturation Physics
Strengths and Weaknesses of Our Method

Weaknesses

It is difficult to compare the magnitudes of multiple sources of STSAs, since some of them are nonperturbative. This method hinges on eikonal kinematics; recoil corrections cannot be incorporated into the Wilson lines. Describing finite-size effects with Θ-functions is very crude. Is that really better than assuming a nonperturbative ansatz?
Weaknesses

- It is difficult to compare the magnitudes of multiple sources of STSA, since some of them are nonperturbative.
Weaknesses

- It is difficult to compare the magnitudes of multiple sources of STSA, since some of them are nonperturbative.
- This method hinges on eikonal kinematics; recoil corrections cannot be incorporated into the Wilson lines.
Weaknesses

- It is **difficult** to compare the magnitudes of multiple sources of STSA, since some of them are nonperturbative.

- This method hinges on eikonal kinematics; **recoil corrections** cannot be incorporated into the Wilson lines.

- Describing finite-size effects with Θ-functions is **very** crude. Is that really better than assuming a nonperturbative ansatz?
Future Work/Improvements (Wishful Thinking)

- Better estimation of the transverse integrals, especially their k_T-dependence.
- Clarify the roles and interplay of the symmetries involved: C (Odderon vs Pomeron), P (k vs $-k$), and T (ISI vs FSI).
- Establish relationships between several observables (possible coupling of the Odderon to longitudinal single-spin asymmetries?)
- Include small-x evolution of the Pomeron/Odderon into the wave function.
Better estimation of the transverse integrals, especially their k_T-dependence.
Future Work/Improvements (Wishful Thinking)

- Better estimation of the transverse integrals, especially their k_T-dependence.
- Clarify the roles and interplay of the symmetries involved: C (Odderon vs Pomeron), P (k vs $-k$), and T (ISI vs FSI).

M. Sievert and Y. Kovchegov
At The Intersection of Spin and Saturation Physics
Better estimation of the transverse integrals, especially their k_T-dependence.

Clarify the roles and interplay of the symmetries involved: C (Odderon vs Pomeron), P (k vs $-k$), and T (ISI vs FSI).

Establish relationships between several observables (possible coupling of the Odderon to longitudinal single-spin asymmetries?)
Better estimation of the transverse integrals, especially their k_T-dependence.

Clarify the roles and interplay of the symmetries involved: C (Odderon vs Pomeron), P (k vs $-k$), and T (ISI vs FSI).

Establish relationships between several observables (possible coupling of the Odderon to longitudinal single-spin asymmetries?)

Include small-x evolution of the Pomeron/Odderon into the wave function.
Future Work/Improvements (Wishful Thinking)

- Better estimation of the transverse integrals, especially their k_T-dependence.
- Clarify the roles and interplay of the symmetries involved: C (Odderon vs Pomeron), $P (k \text{ vs } -k)$, and T (ISI vs FSI).
- Establish relationships between several observables (possible coupling of the Odderon to longitudinal single-spin asymmetries?)
- Include small-x evolution of the Pomeron/Odderon into the wave function.

Thank You!