(Time-dependent) Mean-field approaches to nuclear response and reaction

Takashi Nakatsukasa (RIKEN Nishina Center)
Contents

• Finite amplitude method (FAM) for TDHF(B)
 – A feasible alternative approach to (Q)RPA
 – Codes developed so far
 • HF(3D)+FAM (3D coordinate-space rep.)
 • HFBRAD(1D)+FAM (1D radial coordinate rep.)
 • HFBTHO(2D)+FAM (2D HO-basis rep.)

• Pygmy dipole resonances in light to medium-heavy nuclei
 – Shell effects/Magic numbers/Neutron skin

• Glauber calculation of reaction cross section
 – Density input from the mean-field calculation
 – Shell effect similar to the PDR
Time-dependent Hartree-Fock (TDHF)

Time-dependent Hartree-Fock equation

\[
\begin{align*}
&i \frac{\partial}{\partial t} \phi_i(t) = \{h(t) + V_{\text{ext}}(t)\} \phi_i(t) \\
&i \frac{\partial}{\partial t} \rho(t) = [h(t) + V_{\text{ext}}(t), \rho(t)]
\end{align*}
\]

\[
\rho(\vec{r}, t) = \sum_{i=1}^{N} \left| \phi_i(\vec{r}, t) \right|^2
\]

\[
h(t) = h[\rho(t)]
\]
TDHFB for superfluid systems

Time-dependent Hartree-Fock-Bogoliubov equation

\[
i \frac{\partial}{\partial t} \Psi_i(t) = \{H(t) + V_{\text{ext}}(t)\} \Psi_i(t)
\]

\[
i \frac{\partial}{\partial t} R(t) = [H(t) + V_{\text{ext}}(t), R(t)]
\]

\[
\Psi_i = \begin{pmatrix} U_i \\ V_i \end{pmatrix}
\]

\[
H(t) = H[R(t)] = \begin{pmatrix} h & \Delta \\ -\Delta^* & -h^* \end{pmatrix}
\]

\[
R(t) = \sum_i \Psi_i \Psi_i^+ = \begin{pmatrix} \rho(t) & \kappa(t) \\ -\kappa^*(t) & 1 - \rho^*(t) \end{pmatrix}
\]
Small-amplitude limit
(Random-phase approximation)

One-body density operator under a TD external potential

\[i \frac{\hat{\partial}}{\hat{\partial}t} \rho(t) = [h(t) + V_{\text{ext}}(t), \rho(t)] \]

Assuming that the external potential is weak,

\[\rho(t) = \rho_0 + \delta \rho(t) \quad h(t) = h_0 + \delta h(t) = h_0 + \frac{\delta h}{\delta \rho} \bigg|_{\rho_0} \cdot \delta \rho(t) \]

\[i \frac{\hat{\partial}}{\hat{\partial}t} \delta \rho(t) = [h_0, \delta \rho(t)] + [\delta h(t) + V_{\text{ext}}(t), \rho_0] \]

Let us take the external field with a fixed frequency \(\omega \),

\[V_{\text{ext}}(t) = V_{\text{ext}}(\omega)e^{-i\omega t} + V_{\text{ext}}^{+}(\omega)e^{+i\omega t} \]

The density and residual field also oscillate with \(\omega \),

\[\delta \rho(t) = \delta \rho(\omega)e^{-i\omega t} + \delta \rho^{+}(\omega)e^{+i\omega t} \]

\[\delta h(t) = \delta h(\omega)e^{-i\omega t} + \delta h^{+}(\omega)e^{+i\omega t} \]
The linear response (RPA) equation

\[\omega \delta \rho(\omega) = [h_0, \delta \rho(\omega)] + [\delta h(\omega) + V_{\text{ext}}(\omega), \rho_0] \]

Note that all the quantities, except for \(\rho_0 \) and \(h_0 \), are non-hermitian.

\[\delta \rho(t) = \sum_{i=1}^{A} \left(|\delta \psi_i(t)\rangle \langle \phi_i| + |\phi_i\rangle \langle \delta \psi_i(t)| \right) \]

This leads to the following equations for \(X \) and \(Y \):

\[\omega \left| X_i(\omega) \right> = (h_0 - \epsilon_i) \left| X_i(\omega) \right> + \hat{Q} \{ \delta h(\omega) + V_{\text{ext}}(\omega) \} |\phi_i\rangle \]

\[\omega \langle Y_i(\omega) | = -\langle Y_i(\omega) | (h_0 - \epsilon_i) - \langle \phi_i | \{ \delta h(\omega) + V_{\text{ext}}(\omega) \} \hat{Q} \]

\[\hat{Q} = \sum_{i=1}^{A} (1 - |\phi_i\rangle \langle \phi_i|) \]

These are nothing but the “RPA linear-response equations”. \(X \) and \(Y \) are called “forward” and “backward” amplitudes.
Matrix formulation

\[\omega |X_i(\omega)\rangle = \left(h_0 - \varepsilon_i\right)|X_i(\omega)\rangle + \hat{Q}\{\delta h(\omega) + V_{\text{ext}}(\omega)\}|\phi_i\rangle \]

\[\omega \langle Y_i(\omega)\rangle = -\langle Y_i(\omega)\rangle\left(h_0 - \varepsilon_i\right) - \langle \phi_i\rangle\{\delta h(\omega) + V_{\text{ext}}(\omega)\}\hat{Q} \]

(1) \quad \hat{Q} = 1 - \sum_{i=1}^{A} |\phi_i\rangle\langle\phi_i| \]

If we expand the X and Y in particle orbitals:

\[|X_i(\omega)\rangle = \sum_{m>A} |\phi_m\rangle X_{mi}(\omega) , \quad |Y_i(\omega)\rangle = \sum_{m>A} |\phi_m\rangle Y^*_{mi}(\omega) \]

Taking overlaps of Eq.(1) with particle orbitals

\[\left\{ \begin{pmatrix} A & B \\ B^* & A^* \end{pmatrix} - \omega \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\} \begin{pmatrix} X_{mi}(\omega) \\ Y_{mi}(\omega) \end{pmatrix} = -\begin{pmatrix} (V_{\text{ext}})_{mi} \\ (V_{\text{ext}})_{im} \end{pmatrix} \]

\[A_{mi,nj} = (\varepsilon_m - \varepsilon_n)\delta_{mn}\delta_{ij} + \langle \phi_m | \frac{\partial h}{\partial \rho_{nj}} | \rho_0 \rangle |\phi_i\rangle \]

\[B_{mi,nj} = \langle \phi_m | \frac{\partial h}{\partial \rho_{jn}} | \rho_0 \rangle |\phi_i\rangle \]

In many cases, setting \(V_{\text{ext}} = 0 \) and solve the normal modes of excitations:

→ Diagonalization of the matrix
Small-amplitude approximation
--- Linear response (RPA) equation ---

\[
\begin{pmatrix}
A & B \\
B^* & A^*
\end{pmatrix} - \omega
\begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix}
\begin{pmatrix}
X_{mi}(\omega) \\
Y_{mi}(\omega)
\end{pmatrix} = -\begin{pmatrix}
(V_{\text{ext}})_{mi} \\
(V_{\text{ext}})_{im}
\end{pmatrix}
\]

\[
A_{mi,nj} = (\varepsilon_m - \varepsilon)\delta_{mn}\delta_{ij} + \frac{\partial h}{\partial \rho_{nj}}_{\rho_0} |\phi_i\rangle
\]

\[
B_{mi,nj} = \langle \phi_m | \frac{\partial h}{\partial \rho_{jn}}_{\rho_0} | \phi_i \rangle
\]

- Tedious calculation of residual interactions
- Computationally very demanding, especially for deformed systems.

However, in principle, the self-consistent single-particle Hamiltonian should contain everything. We can avoid explicit calculation of residual interactions.
Residual fields can be estimated by the finite difference method:

$$\delta h(\omega) = \frac{1}{\eta} \left(h[\langle \psi' \rangle, \langle \psi \rangle] - h_0 \right)$$

$$|\psi_i\rangle = |\phi_i\rangle + \eta |X_i(\omega)\rangle, \quad \langle \psi'_i \rangle = \langle \phi_i \rangle + \eta \langle Y_i(\omega) \rangle$$

Starting from initial amplitudes $X^{(0)}$ and $Y^{(0)}$, one can use an iterative method to solve the following linear-response equations.

$$\omega |X_i(\omega)\rangle = (h_0 - \epsilon_i) |X_i(\omega)\rangle + \hat{Q} \{ \delta h(\omega) + V_{\text{ext}}(\omega) \} |\phi_i\rangle$$

$$\omega \langle Y_i(\omega) \rangle = -\langle Y_i(\omega) \rangle (h_0 - \epsilon_i) - \langle \phi_i \rangle \{ \delta h(\omega) + V_{\text{ext}}(\omega) \} \hat{Q}$$

Programming of the RPA code becomes very much trivial, because we only need calculation of the single-particle potential, with different bras and kets.
Step-by-step numerical procedure

1. Set the initial amplitudes $X^{(0)}$ and $Y^{(0)}$

2. Calculate the residual fields δh by the FAM formula

$$\delta h(\omega) = \frac{1}{\eta} \left(h \langle \psi^\prime | \psi \rangle - h_0 \right)$$

$$|\psi_i\rangle = |\phi_i\rangle + \eta |X_i(\omega)\rangle, \quad \langle \psi_i^\prime \rangle = \langle \phi_i | + \eta \langle Y_i(\omega) |$$

3. Now, we can calculate the l.h.s. of the following equations:

$$\left\{ \begin{align*}
(\omega - h_0 + \varepsilon_i) |X_i(\omega)\rangle - \delta h(\omega) |\phi_i\rangle &= V_{\text{ext}} (\omega) |\phi_i\rangle \\
\langle Y_i(\omega) | (\omega + h_0 - \varepsilon_i) + \langle \phi_i | \delta h(\omega) &= -\langle \phi_i | V_{\text{ext}} (\omega) \\
\end{align*} \right. \Rightarrow A\bar{x} = \bar{b}$$

$$\bar{x} = \begin{pmatrix} |X_i(\omega)\rangle \\ \langle Y_i(\omega) | \end{pmatrix}, \quad \bar{b} = \begin{pmatrix} V_{\text{ext}} (\omega) |\phi_i\rangle \\ -\langle \phi_i | V_{\text{ext}} (\omega) \end{pmatrix}$$

4. Update the amplitude to $(X^{(1)}, Y^{(1)})$ by an iterative algorithm, such as the conjugate gradient method and its derivatives
TDHFB for superfluid systems

Time-dependent Hartree-Fock-Bogoliubov equation

\[i \frac{\partial}{\partial t} \Psi_i(t) = \{H(t) + V_{\text{ext}}(t)\} \Psi_i(t) \]

\[i \frac{\partial}{\partial t} R(t) = [H(t) + V_{\text{ext}}(t), R(t)] \]

\[
\Psi_i = \begin{pmatrix} U_i \\ V_i \end{pmatrix} \quad \quad H(t) = H[R(t)] = \begin{pmatrix} h & \Delta \\ -\Delta^* & -h^* \end{pmatrix}
\]

\[
R(t) = \sum_i \Psi_i \Psi_i^* = \begin{pmatrix} \rho(t) & \kappa(t) \\ -\kappa^*(t) & 1 - \rho^*(t) \end{pmatrix}
\]
Residual fields can be calculated by

\[
\delta h(\omega) = \frac{1}{\eta} \left\{ h[\bar{V}_\eta^*, V_\eta] - h_0 \right\}
\]

\[
\delta \Delta(\omega) = \frac{1}{\eta} \left\{ \Delta[\bar{V}_\eta^*, U_\eta] - \Delta_0 \right\}
\]

QRPA equations are

\[
(E_\mu + E_\nu - \omega) X_{\mu\nu} + \delta H_{\mu\nu}^{20} = F_{\mu\nu}^{20}
\]

\[
(E_\mu + E_\nu + \omega) Y_{\mu\nu} + \delta \tilde{H}_{\mu\nu}^{02*} = F_{\mu\nu}^{02}
\]

\[
\begin{pmatrix}
\delta H_{\mu\nu} \\
\delta H_{\mu\nu}^{\tilde{\mu}\tilde{\nu}}
\end{pmatrix}
= W^+ \begin{pmatrix}
\delta h & \delta \Delta \\
\tilde{\delta} \Delta^* & -\delta \tilde{\delta}^*
\end{pmatrix} W
\]

\[
W = \begin{pmatrix}
U & V^* \\
V & U^*
\end{pmatrix}
\]
Implementation of the Finite amplitude method

- (TD)HF (3D coord.) + FAM
 - Implementation by Tsunenori Inakura
 - Inakura, T.N., Yabana, PRC 80, 044301 (2009); arXiv:1106.3618

- Spherical HFB (radial coord.) + FAM
 - Implementation to HFBRAD by Paolo Avogadro
 - Time-odd fields are added
 - Avogadro and T.N., PRC 84, 014314 (2011)

- Deformed HFB + FAM
 - Implementation to HFBTHO by Mario & Markus
 - Time-odd fields are added
 - Stoitsov et al, arXiv:1107.3530
HFBRAD+FAM

Test calculation: IS monopole

Our result: Red line

qp cut-off at 60 MeV

All 2qp states are included.

Calculation by Terasaki et al. (PRC71, 034310 (2005): Green line

<table>
<thead>
<tr>
<th>174Sn, 0^+</th>
<th>$\omega = 4$ MeV</th>
<th>$\omega = 12$ MeV</th>
<th>$\omega = 20$ MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>η</td>
<td>ϵ</td>
<td>N_{iter}</td>
<td>ϵ</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>0.44</td>
<td>1000</td>
<td>1.63\cdot10$^{-1}$</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>6.10\cdot10$^{-5}$</td>
<td>1000</td>
<td>1.76\cdot10$^{-5}$</td>
</tr>
<tr>
<td>10^{-5}</td>
<td>$<10^{-5}$</td>
<td>161</td>
<td>$<10^{-5}$</td>
</tr>
<tr>
<td>10^{-8}</td>
<td>$<10^{-5}$</td>
<td>161</td>
<td>$<10^{-5}$</td>
</tr>
<tr>
<td>10^{-9}</td>
<td>$<10^{-5}$</td>
<td>161</td>
<td>$<10^{-5}$</td>
</tr>
<tr>
<td>10^{-10}</td>
<td>$<10^{-5}$</td>
<td>161</td>
<td>1.19\cdot10$^{-5}$</td>
</tr>
</tbody>
</table>

Linearization parameter

$\eta = 10^{-9} \sim 10^{-5}$
HFBTHO+FAM

- $N_{\text{shell}} = 5$
 - Comparison with Losa et al. PRC 81 (2010) 064307

- $N_{\text{shell}} = 20$
 - Required memory sizes

<table>
<thead>
<tr>
<th>ν_{crit}</th>
<th>Size of A, B matrices</th>
<th>Memory (in GB)</th>
<th>Memory (in GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{40}Mg</td>
<td>32039×32039</td>
<td>16.4</td>
<td></td>
</tr>
<tr>
<td>10^{-3}</td>
<td>53386×53386</td>
<td>45.6</td>
<td></td>
</tr>
<tr>
<td>10^{-4}</td>
<td>53823×53823</td>
<td>46.35</td>
<td></td>
</tr>
<tr>
<td>10^{-5}</td>
<td>130936×130936</td>
<td>274.31</td>
<td></td>
</tr>
<tr>
<td>10^{-10}</td>
<td>189271×189271</td>
<td>473.18</td>
<td></td>
</tr>
<tr>
<td>10^{-15}</td>
<td>211159×211159</td>
<td>713.41</td>
<td></td>
</tr>
<tr>
<td>^{100}Zr</td>
<td>83970×83970</td>
<td>112.81</td>
<td></td>
</tr>
<tr>
<td>10^{-3}</td>
<td>140229×140229</td>
<td>314.63</td>
<td></td>
</tr>
<tr>
<td>10^{-4}</td>
<td>160633×160633</td>
<td>412.85</td>
<td></td>
</tr>
<tr>
<td>10^{-5}</td>
<td>189500×189500</td>
<td>574.56</td>
<td></td>
</tr>
<tr>
<td>10^{-10}</td>
<td>230274×230274</td>
<td>848.41</td>
<td></td>
</tr>
<tr>
<td>10^{-15}</td>
<td>230304×230304</td>
<td>848.64</td>
<td>0.572</td>
</tr>
</tbody>
</table>

^{24}Mg, SLy4

$\Delta_n = 0.666 \text{ MeV}$

$\Delta_p = 0.665 \text{ MeV}$

$\beta = -0.163$
- Cal. with $N_{\text{shell}} = 20$
 - ^{100}Zr
 - ^{240}Pu (g.s. & f.i.)
- Calculation was performed on a laptop PC.
Pygmy dipole resonance (PDR)

 - Strong neutron shell effects
 - Correlation with neutron skin thickness
Magic numbers for PDR emergence

- Zn
- Ni
- Fe
- Cr
- Ti
- Ca
- Ar
- Mg
- Si
- S
- N=15
- N=29

(Up to 10 MeV)
Next magic number: N=51

Z=24

Z=28

Z=32
Magic numbers and low-l orbits

- Magic numbers: $N=15, 29, 51, \ldots$
- Importance of weakly bound orbits with $l=0, 1,$ and $2.$
Pygmy dipole resonance (PDR) and neutron skin thickness

- Reinhard and Nazarewicz, PRC 81, 051303 (2010)
 - Ver weak correlation between PDR and neutron skin thickness
PDR strength vs neutron skin thickness

\[m_1(PDR)/m_1 \text{ (\%)} \]

\[R_n - R_p \text{ [fm]} \]

\[\nu\text{-rich stable} \]

Weak correlation
(consistent with P.-G. & Witek, PRC81)

Universal correlation with skin thickness

- PDR fraction/ΔR_{np} shows a universal rate, but for specific ranges of neutron numbers.
- The rate is about 0.2 /fm.
Reaction cross section in Glauber theory

Reaction cross section:

\[\sigma_R = \int db \left(1 - |e^{i\chi(b)}|^2 \right), \]

Phase shift function:

\[e^{i\chi(b)} = \left\langle \Psi_0 \Theta_0 \right| \prod \prod \left\{ 1 - \Gamma_{NN}(s_i - t_j + b) \right\} \left| \Psi_0 \Theta_0 \right\rangle. \]

Many-body operator, multiple integral

Profile function:

\[\Gamma_{NN}(b) = \frac{1 - i\alpha}{4\pi\beta} \sigma_{tot}^{NN} \exp \left(-\frac{b^2}{2\beta} \right) \]

Parameters are fitted to reproduce N-N scattering

\(\alpha \): ratio of the real and imaginary part of the N-N scattering

\(\beta \): slope parameter of the N-N elastic differential cross sections. Give a “range” of the interaction.

E < Pion production threshold

\[\beta = \frac{1 - \alpha^2}{16\pi \sigma_{tot}^{NN}} \]

E > Pion production threshold

\[\sigma_{el}^{NN} = \frac{1 - \alpha^2}{16\pi \beta^2} \left(\sigma_{tot}^{NN} \right)^2 \]
Practical way to calculate phase-shift function

\[G(b, \lambda) = \langle \Phi_0 | \prod_{i=1}^{A} [1 - \lambda \Gamma(b - s_i)] | \Phi_0 \rangle \]

Need
\[\lambda = 1 \]

Cumulant expansion
\[
\ln G(b, \lambda) = \lambda \left[\frac{\partial}{\partial \lambda} \ln G(b, \lambda) \right]_{\lambda=0} + \frac{1}{2} \lambda^2 \left[\frac{\partial^2}{\partial \lambda^2} \ln G(b, \lambda) \right]_{\lambda=0} + \ldots,
\]
\[
\left[\frac{\partial}{\partial \lambda} \ln G \right]_{\lambda=0} = -\langle \Phi_0 | \sum_{i=1}^{A} \Gamma(b - s_i) | \Phi_0 \rangle = -\int dr \rho(r) \Gamma(b - s)
\]

OLA: Optical Limit Approximation
\[
e^{i \chi_{\text{OLA}}(b)} = \exp \left\{ -\int \int dr dr' \rho_p(r) \rho_T(r') \Gamma_{NN}(s - t + b) \right\}
\]

One-body density distributions are calculated by the 3D HF calculation.
Odd-A nuclei are calculated with the filling approximation.
Ne isotopes at 240AMeV

Mean-field calculation for density provides a reasonable agreement, except for even-odd effects.
Kinks in σ_R and in PDR strength are due to s-wave contribution.

Deformation effect is seen in σ_R.
Summary

- Finite amplitude method (FAM) provides an alternative feasible approach to linear response calculation.
 - Several codes developed (FAM on 1D-, 2D-HFB, 3D-HF)
 - Systematic analysis on Pygmy Dipole Resonance (PDR)
 - Magic numbers for PDR (N=15, 29, 51, …), which are related to the occupation of low-\(l\) orbitals (s, p, d).
 - Universal correlation between the PDR fraction and the neutron skin thickness; \(m_1(PDR)/m_1 \approx (0.2 / \text{fm}) \Delta R_{np}\).
- Systematic calculations of reaction cross sections for O, Ne, Mg, Si isotopes
 - Qualitative agreement with experimental data
 - The kink at N=14 is consistent with that in PDR fraction
Collaborators

Paolo Avogadro (RNC/Milano), Shuichiro Ebata (RNC), Tsunenori Inakura (RNC), Kazuhiro Yabana (Tsukuba/RNC)
Wataru Horiuchi (RNC), Yasuyuki Suzuki (Niigata/RNC),
Markus Kortelainen (ORNL), Cristina Losa (SISSA),
Witold Nazarewicz (UTK/ORNL), Mario Stoitsov (ORNL)

RNC: RIKEN Nishina Center (Wako, Japan)
ORNL: Oak Ridge Nat. Lab. (Oak Ridge, USA)
UTK: Univ. Tennessee (Knoxville, USA)
SISSA: Scuola Internazionale Superiore di Studi Avanzati (Trieste, Italy)