Recent progress and new challenges in \textit{ab initio} nuclear structure and nuclear reactions

James P. Vary
Iowa State University

Extreme Computing and its Applications
Institute of Nuclear Theory
June 6, 2011
Ab initio nuclear physics - fundamental questions

- What controls nuclear saturation?
- How the nuclear shell model emerges from the underlying theory?
- What are the properties of nuclei with extreme neutron/proton ratios?
- Can we predict useful cross sections that cannot be measured?
- Can nuclei provide precision tests of the fundamental laws of nature?
- Under what conditions do we need QCD to describe nuclear structure?
UNEDF SciDAC Collaboration
Universal Nuclear Energy Density Functional

QCD
Theory of strong interactions

χEFT
Chiral Effective Field Theory

Inter-Nucleon
NN, NNN interactions
AV18, EFT, $V_{\text{low-k}}$

Theory of Light Nuclei
Spectroscopy and selected reactions
Verification: NCSM=GFMC=CC
Validation: nuclei with $A<16$

Density Functional Theory
improved functionals
remove computationally imposed constraints
properties for all nuclei with $A>16$

Dynamic Extensions of DFT
LACM by GCM,TDDFT,QRPA
Level densities

Low-energy Reactions
Hauser-Feshbach
Feshbach-Kerman-Koonin
Fission
mass and energy distributions

Big Bang
Nucleosynthesis & Stellar Reactions

r,s processes & Supernovae

www.unedf.org
List of Priority Research Directions

- Physics of extreme neutron-rich nuclei and matter
- Microscopic description of nuclear fission
- Nuclei as neutrino physics laboratories
- Reactions that made us – triple α process and $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$
Ab initio structure in light nuclei

$^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$

^{132}Sn structure

^{78}Ni structure

$^{8}\text{Be}(\alpha,\gamma)^{12}\text{C}$
Testing the doubly magic character of tin-132

Adding an extra neutron to a nucleus with magic numbers of both neutrons and protons, and watching how it settles in, tests the shell model and can help elucidate the creation of heavy elements in supernovae.

Figure 2. Doubly magic nuclides tin-132 and lead-208 clearly manifest special properties when compared, from archival data, with lighter isotopes that also have even neutron numbers N. (a) The energy of the first electric-quadrupole excitation peaks dramatically at N_{magic} (82 for Sn, 126 for Pb). (b) The energy cost of removing a neutron pair falls abruptly after N_{magic}. (Adapted from ref. 1.)

Figure 4. Valence states of the extra tin-133 neutron. For each of the valence levels observed in the Oak Ridge experiment, schematically shown above the doubly magic 132Sn core, the best-fit quantum state is given (left) together with its spectroscopic factor S (right), a measure of spectral purity. In the spectroscopic notation, p and f denote, respectively, orbital angular momenta 1 and 3. If the best-fit state is pure, with no admixture of other quantum states due to core excitations, $S = 1$. (Adapted from ref. 1.)

Based on:
All interactions are “effective” until the ultimate theory unifying all forces in nature is attained.

Thus, even the Standard Model, incorporating QCD, is an effective theory valid below the Planck scale
\[\lambda < 10^{19} \text{ GeV/c} \]

The “bare” NN interaction, usually with derived quantities, is thus an effective interaction valid up to some scale, typically the scale of the known NN phase shifts and Deuteron gs properties
\[\lambda \sim 600 \text{ MeV/c} (3.0 \text{ fm}^{-1}) \]

Effective NN interactions can be further renormalized to lower scales and this can enhance convergence of the many-body applications
\[\lambda \sim 300 \text{ MeV/c} (1.5 \text{ fm}^{-1}) \]

“Consistent” NNN and higher-body forces are those valid to the same scale as their corresponding NN partner, and obtained in the same renormalization scheme.

<table>
<thead>
<tr>
<th>Ab initio renormalization schemes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRG: Similarity Renormalization Group</td>
</tr>
<tr>
<td>LSO: Lee-Suzuki-Okamoto</td>
</tr>
<tr>
<td>Vlowk: V with low k scale limit</td>
</tr>
<tr>
<td>UCOM: Unitary Correlation Operator Method</td>
</tr>
<tr>
<td>and there are more!</td>
</tr>
</tbody>
</table>
The Nuclear Many-Body Problem

The many-body Schroedinger equation for bound states consists of \(2^A \binom{A}{Z}\) coupled second-order differential equations in 3A coordinates using strong (NN & NNN) and electromagnetic interactions.

Successful *ab initio* quantum many-body approaches (\(A > 6\))

- Stochastic approach in coordinate space
- Greens Function Monte Carlo (GFMC)
- Hamiltonian matrix in basis function space
 - No Core Shell Model (NCSM)
 - No Core Full Configuration (NCFC)
- Cluster hierarchy in basis function space
 - Coupled Cluster (CC)
- Lattice + EFT approach (New)

Comments

All work to preserve and exploit symmetries
Extensions of each to scattering/reactions are well-underway
They have different advantages and limitations
AV18+IL7 reproduces ~50 levels (+ ~60 isobaric analogs) up to 12C with rms error ~0.6 MeV
We have motivated or supported experimental work in almost all these nuclei.
VMC for Asymptotic Normalization Coefficients (ANC)

\[\Phi(r \to \infty) = \langle \Psi_{A-1} | a_{\ell j} (r \to \infty) | \Psi_A \rangle = C_{\ell j} W_{-\eta, \ell + \frac{1}{2}} (2kr) / r \]

- Best laboratory handle on many astrophysical reactions
- Much recent expt. interest
- Normalization to overlap tails is difficult
- The ANC can be recast into a short-ranged integral

\[C_{\ell j} \sim \mathcal{A} \int M_{-\eta, \ell + \frac{1}{2}} (2kr) / r \]
\[\times \Psi_{A-1}^\dagger \chi^\dagger Y_{lm} (\hat{r}) (U_{\text{rel}} - V_C) \Psi_A d\mathbf{R} \]

- This integral is ideal for QMC evaluation

UNEDF AND INCITE COMPUTATIONS OF 12C ON ARGONNE’S IBM BLUE GENE/P

- Under the UNEDF SciDAC, Rusty Lusk (Math. & Comp. Sci.), Ralph Butler (MSTU) have developed ADLB to enable parallelization of GFMC to $>100,000$ cores
- Very successful calculation of 12C(gs) $E(\text{GFMC}) = -93.2(6)$ vs expt = 92.16 MeV
 – Done with Argonne v18 NN & Illinois-7 NNN potentials
 – RMS radius also very good – 2.35 fm vs experiment of 2.33 fm
Ab Initio Computation of the 17F Proton Halo State and Resonances in A=17 Nuclei

G. Hagen1, T. Papenbrock2,1, and M. Hjorth-Jensen3

1Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
2Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
3Department of Physics and Center of Mathematics for Applications, University of Oslo, N-0316 Oslo, Norway

Received 9 March 2010; published 4 May 2010

<table>
<thead>
<tr>
<th></th>
<th>17O</th>
<th>17F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/2$^+$</td>
<td>5/2$^+$</td>
</tr>
<tr>
<td>GHF</td>
<td>-2.8</td>
<td>-3.2</td>
</tr>
<tr>
<td>Exp.</td>
<td>-3.272</td>
<td>-4.143</td>
</tr>
</tbody>
</table>

TABLE I: Single-particle energies of the 1/2$^+$ and 5/2$^+$ states, and the spin-orbit splitting E\textsubscript{so}(d\textsubscript{3/2}−d\textsubscript{5/2}) (in units of MeV) in 17O and 17F calculated in a Berggren (Gamow) basis (GHF), and the comparison to experiment [31].

<table>
<thead>
<tr>
<th></th>
<th>17O 3/2$^+$</th>
<th>17F 3/2$^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Es\textsubscript{p}</td>
<td>Γ</td>
</tr>
<tr>
<td>This work</td>
<td>1.1</td>
<td>0.014</td>
</tr>
<tr>
<td>Experiment</td>
<td>0.942</td>
<td>0.096</td>
</tr>
</tbody>
</table>

TABLE II: Computed 3/2$^+$ single-particle resonance energies in 17O and 17F compared to data [31]. The real part $E\textsubscript{sp} = \text{Re}[E]$, and the width $\Gamma = 2\text{Im}[E]$ are given in units of MeV.
Coupled-cluster theory for open-shell nuclei

G. R. Jansen,¹ M. Hjorth-Jensen,¹ G. Hagen,²,³ and T. Papenbrock³,²,⁴,⁵

¹Department of Physics and Center of Mathematics for Applications, University of Oslo, N-0316 Oslo, Norway
²Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
³Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
⁴GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
⁵Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany

We develop a new method to describe properties of truly open-shell nuclei. This method is based on single-reference coupled-cluster theory and the equation-of-motion method with extensions to nuclei with \(A \pm 2 \) nucleons outside a closed shell. We perform proof-of-principle calculations for the ground states of the helium isotopes \(^3\text{He}\) and \(^4\text{He}\) and the first excited \(2^+ \) state in \(^6\text{He}\). The comparison with exact results from matrix diagonalization in small model spaces demonstrates the accuracy of the coupled-cluster methods. Three-particle–one-hole excitations of \(^4\text{He}\) play an important role for the accurate description of \(^6\text{He}\). For the open-shell nucleus \(^6\text{He}\), the computational cost of the method is comparable with the coupled-cluster singles-and-doubles approximation while its accuracy is similar to coupled-cluster with singles, doubles and triples excitations.

Chiral NN (SRG,1.9 fm\(^{-1}\)), \(\hbar\omega = 24 \text{ MeV} \), \(N_{\text{shell}}=5 \), \(l_{\text{max}} =2 \)

<table>
<thead>
<tr>
<th></th>
<th>(^3\text{He})</th>
<th>(^4\text{He})</th>
<th>(^6\text{He})</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSD</td>
<td>-6.624</td>
<td>-27.468</td>
<td>-22.997</td>
</tr>
<tr>
<td>CCSDT-1</td>
<td>-6.829</td>
<td>-27.600</td>
<td>-23.381</td>
</tr>
<tr>
<td>CCSDT</td>
<td>-6.911</td>
<td>-27.619</td>
<td>-23.474</td>
</tr>
<tr>
<td>EOM-CCSD</td>
<td>-6.357</td>
<td>-27.468</td>
<td>-23.382</td>
</tr>
<tr>
<td>FCI</td>
<td>-6.911</td>
<td>-27.640</td>
<td>-23.640</td>
</tr>
</tbody>
</table>

Table VII: Ground-state energies (in MeV) for \(^3\text{He}\), \(^4\text{He}\) and \(^5\text{He}\), calculated with coupled-cluster methods truncated at the 2-particle-2-hole (CCSD) level, 3-particle-3-hole (CCSDT) and a hybrid (CCSDT-1) where a small subset of the leading diagrams in CCSDT are included. For the EOM-CCSD approach, truncations has been made at the 1-particle-2-hole level, the 2-particle-2-hole level, and the 2-particle-1-hole level for \(^3\text{He}\), \(^4\text{He}\) and \(^5\text{He}\) respectively. The energies are

\(^6\text{He}\)

<table>
<thead>
<tr>
<th></th>
<th>(^0^+)</th>
<th>(^2^+)</th>
<th>(^0^+) (J)</th>
<th>(^2^+) (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCSD</td>
<td>-22.732</td>
<td>-20.905</td>
<td>0.78</td>
<td>2</td>
</tr>
<tr>
<td>CCSDT-1</td>
<td>-24.617</td>
<td>-21.586</td>
<td>0.25</td>
<td>2</td>
</tr>
<tr>
<td>CCSDT</td>
<td>-24.530</td>
<td>-21.786</td>
<td>0.01</td>
<td>2</td>
</tr>
<tr>
<td>2PA-EOM-CCSD(2p-0h)</td>
<td>-21.185</td>
<td>-18.996</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2PA-EOM-CCSD(3p-1h)</td>
<td>-24.543</td>
<td>-21.634</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>FCI</td>
<td>-24.853</td>
<td>-21.994</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Table VIII: Energies (in MeV) for the ground state and first excited state of \(^6\text{He}\) and the expectation value of the total angular momentum, calculated with coupled-cluster methods truncated at the 2-particle-2-hole (CCSD) level, 3-particle-3-hole (CCSDT) and a hybrid (CCSDT-1) where the 3-particle-3-hole amplitudes are treated perturbatively. The 2PA-EOM-CCSD results are calculated with a truncation at the 2-
No Core Shell Model
A large sparse matrix eigenvalue problem

\[
H = T_{\text{rel}} + V_{NN} + V_{3N} + \cdots
\]

\[
H|\Psi_i\rangle = E_i |\Psi_i\rangle
\]

\[
|\Psi_i\rangle = \sum_{n=0}^{\infty} A_n^i |\Phi_n\rangle
\]

Diagonalize \(\{\langle \Phi_m | H | \Phi_n \rangle\} \)

- Adopt realistic NN (and NNN) interaction(s) & renormalize as needed - retain induced many-body interactions: Chiral EFT interactions and JISP16
- Adopt the 3-D Harmonic Oscillator (HO) for the single-nucleon basis states, \(\alpha, \beta, \ldots \)
- Evaluate the nuclear Hamiltonian, \(H \), in basis space of HO (Slater) determinants (manages the bookkeeping of anti-symmetrization)
- Diagonalize this sparse many-body \(H \) in its “m-scheme” basis where \([\alpha = (n, l, j, m, \tau_z)] \)

\[
|\Phi_n\rangle = [a^+_\alpha \cdots a^+_\zeta]_n |0\rangle
\]

\(n = 1, 2, \ldots, 10^{10} \) or more!

- Evaluate observables and compare with experiment

Comments
- Straightforward but computationally demanding => new algorithms/computers
- Requires convergence assessments and extrapolation tools
- Achievable for nuclei up to \(A=16 \) (40) today with largest computers available
Note additional predicted states! Shown as dashed lines.
Beryllium isotopes

updated from Vary, Maris, Ng, Yang, Sosonkina, arXiv:0907.0209 [nucl-th],

- Exploring physics near the neutron drip line – in progress
- Un-natural parity states systematically underbound with JISP16
- Similar results for He- and Li-isotopes
^{12}C - At the heart of matter

The first excited 0+ state of ^{12}C, the “Hoyle state”, is the key state of ^{12}C formation in the triple-alpha fusion process that occurs in stars. Due to its role in astrophysics and the fact that carbon is central to life, some refer to this as one of the “holy grails” of nuclear theory.

Many important unsolved problems of the Hoyle state:
- Microscopic origins of the triple-alpha structure are unsolved
- Breathing mode puzzle - experiments disagree on sum rule fraction
- Laboratory experiments to measure the formation rate are very difficult - resulting uncertainties are too large for predicting the ^{12}C formation rate through this state that dictates the size of the iron core in pre-supernova stars

Conclusion: Need *ab initio* solutions of the Hoyle state with no-core method that accurately predicts the ground state binding energy

\Rightarrow parameter free predictions for the Hoyle state achievable with petascale within 1-2 years
Lattice + EFT results [Adjusted to 4He, predict rest]

TABLE I: Lattice results for the ground state energies for 4He, 8Be, and ^{12}C. For comparison we also exhibit the experimentally observed energies. All energies are in units of MeV.

<table>
<thead>
<tr>
<th></th>
<th>4He</th>
<th>8Be</th>
<th>^{12}C</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO [$O(Q^0)$]</td>
<td>-24.8(2)</td>
<td>-60.9(7)</td>
<td>-110(2)</td>
</tr>
<tr>
<td>NLO [$O(Q^2)$]</td>
<td>-24.7(2)</td>
<td>-60(2)</td>
<td>-93(3)</td>
</tr>
<tr>
<td>IB + EM [$O(Q^2)$]</td>
<td>-23.8(2)</td>
<td>-55(2)</td>
<td>-85(3)</td>
</tr>
<tr>
<td>NNLO [$O(Q^3)$]</td>
<td>-28.4(3)</td>
<td>-58(2)</td>
<td>-91(3)</td>
</tr>
<tr>
<td>Experiment</td>
<td>-28.30</td>
<td>-56.50</td>
<td>-92.16</td>
</tr>
</tbody>
</table>

TABLE II: Lattice results for the low-lying excited states of ^{12}C. For comparison the experimentally observed energies are shown. All energies are in units of MeV.

<table>
<thead>
<tr>
<th>^0j</th>
<th>2^+_1, $J_z=0$</th>
<th>2^+_1, $J_z=2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO [$O(Q^0)$]</td>
<td>-94(2)</td>
<td>-92(2)</td>
</tr>
<tr>
<td>NLO [$O(Q^2)$]</td>
<td>-82(3)</td>
<td>-87(3)</td>
</tr>
<tr>
<td>IB + EM [$O(Q^2)$]</td>
<td>-74(3)</td>
<td>-80(3)</td>
</tr>
<tr>
<td>NNLO [$O(Q^3)$]</td>
<td>-85(3)</td>
<td>-88(3)</td>
</tr>
<tr>
<td>Experiment</td>
<td>-84.51</td>
<td>-87.72</td>
</tr>
</tbody>
</table>

FIG. 3 (color online). The radial distribution function $f_{pp}(r)$ for the ground state (A), Hoyle state (B), and in the $J_z = 0$ (C) and $J_z = 2$ (D) projections of the spin-2 state. The yellow bands denote error bars.

NB: Lattice spacing ~ 2 fm, $\sim 3\text{MeV}$ uncertainty in energies
- Solves the puzzle of the long but useful lifetime of ^{14}C
- Establishes a major role for strong 3-nucleon forces in nuclei
- Strengthens foundation for guiding DOE-supported experiments

- Dimension of matrix solved for 8 lowest states $\sim 1 \times 10^9$
- Solution takes ~ 6 hours on 215,000 cores on Cray XT5 Jaguar at ORNL
But how to progress to heavier nuclei – structure & reactions?

IT-NCSM (Roth, Navratil, . . .)
SU3-NCSM (LSU-ISU-OSU-Ames Lab NSF PetaApps collab)
MCNCSM (Japan-US collaboration)

NCSM with a core (Barrett)

Energy-Density Functional theory (SciDAC/UNEDF collab)
EFT with achievable basis spaces (van Kolck)
TDSLDA (Bulgac)
Innovations underway to improve the NCSM with aims:
(1) improve treatment of clusters and intruders
(2) enable \textit{ab initio} solutions of heavier nuclei
Initially, all follow the NCFC approach = extrapolations

\textbf{Importance Truncated – NCSM}
Separate spurious CM motion in same way as CC approach
Robert Roth and collaborators

\textit{“Realistic” single-particle basis - Woods-Saxon example}
Control the spurious CM motion with Lagrange multiplier term
A. Negoita, ISU PhD thesis project
Alternative sp basis spaces – Mark Caprio collaboration

\textbf{SU(3) No Core Shell Model}
Add symmetry-adapted many-body basis states
Preserve exactly the CM factorization
LSU - ISU – OSU collaboration

\textbf{No Core Monte Carlo Shell Model}
Invokes single particle basis (FCI) truncation
Separate spurious CM motion in same way as CC approach
Scales well to larger nuclei
U. Tokyo - ISU collaboration
Taming the scale explosion in nuclear calculations
NSF PetaApps - Louisiana State, Iowa State, Ohio State collaboration

- **Goals**
 - Ab initio calculations of nuclei with unprecedented accuracy using basis-space expansions
 - Current calculations limited to nuclei with \(A \leq 16 \) (up to 20 billion basis states with 2-body forces)

- **Progress**
 - Scalable CI code for nuclei
 - \(\text{Sp}(3,R)/\text{SU}(3) \)-symmetry vital

- **Challenges/Promises**
 - Constructing hybrid Sp-CI code
 - Publicly available peta-scale software for nuclear science

- **Novel approach**
 - Sp-CI: exploiting symmetries of nuclear dynamics
 - Innovative workload balancing techniques & representations of multiple levels of parallelism for ultra-large realistic problems

- **Impact**
 - Applications for nuclear science and astrophysics
Ab initio NCSM reinstating the core!
Name: “Ab Initio Shell Model”?

Figure 6. The quadrupole moment (Q) of the g.s. for 6Li [$I^+(T=0)$] is shown in terms of one- and two-body contributions, as a function of increasing model-space size. The one- and two-body contributions and total Q are depicted as white, gray and black histograms, respectively [18].

FIG. 9. Comparison of spectra for 8He, 9He, and 10He from SSM calculations using the effective 2BVC and 3BVC Hamiltonians and from exact NCSM calculation for $N_{max} = 6$ and $\hbar \Omega = 20$ MeV using the CD-Bonn interaction.
Isovector dipole strength computed in TDSLDA
I. Stetcu et al.
Several consecutive frames of real-time induced fission of 280Cf computed in TDSLDA
I. Stetcu et al.
Rotureau, Stetcu, Barrett, Birse + v.K. '10

Harmonic EFT

U. van Kolck

Trapped two-component fermions

![Graph showing HO levels and inversion of g.s. parity](image)

- NNLO
- \(\frac{r_2}{b} = 0 \)
- \((\text{atom+dimer})_{s\text{ wave}}\)

Contact EFT in harmonic-oscillator potential with two-body scattering parameters as input

Nucleons

- \(I = \frac{1}{2}, J^\pi = \frac{3}{2}^+ \)

scattering length

expt

Rotureau, Stetcu, Barrett + v.K. in preparation

\[A = 3 \]
Descriptive Science

Predictive Science
“Proton-Dripping Fluorine-14”

Objectives

- Apply *ab initio* microscopic nuclear theory’s predictive power to major test case

Impact

- Deliver robust predictions important for improved energy sources
- Provide important guidance for DOE-supported experiments
- Compare with new experiment to improve theory of strong interactions

Experiment confirms our published predictions!

- Dimension of matrix solved for 14 lowest states ~ 2×10^9
- Solution takes ~ 2.5 hours on 30,000 cores (Cray XT4 Jaguar at ORNL)
Ab Initio Neutron drops in traps

UNEDF
Cold Neutrons Trapped in External Fields

S. Gandolfi, J. Carlson, and Steven C. Pieper

Artificial Nuclei with Neutrons only

Energies

Radii

Modified

Original

10 MeV

5 MeV

HO

5 MeV

10 MeV

WS
Preliminary Results

Testing the density matrix expansion against ab initio calculations of trapped neutron drops

S. Bogner, R.J. Furnstahl, M. Kortelainen, P. Maris, M. Stoitsov, and J.P. Vary

HO Traps with strengths of 10, 15 and 20 MeV
Testing the density matrix expansion against ab initio calculations of trapped neutron drops

S. Bogner, R.J. Furnstahl, M. Kortelainen, P. Maris, M. Stoitsov, and J.P. Vary

Preliminary Results

- NN-only Minnesota potential
- \(N = 8 \)
- \(h\Omega = 10 \text{ MeV} \)
- HO trap energy
Properties of trapped neutrons interacting with realistic nuclear Hamiltonians

J. Carlson and S. Gandolfi
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545

Pieter Maris and James Vary
Iowa State University, Ames, Iowa, 50011

Steven C. Pieper
Physics Division, Argonne National Laboratory, Argonne, IL 60439
(Dated: April 20, 2011)
Ab initio Nuclear Structure

Ab initio Nuclear Reactions
Ab initio NCSM/RGM: nucleon-⁴He scattering

- The N-⁴He potential is calculated microscopically from the many-body realistic Hamiltonian and the NCSM eigenstates of the 4He

\[
\left\langle \left(\begin{array}{c}
^4\text{He} \\
r \quad n
\end{array} \right) \left| \hat{A}(H - E)\hat{A} \right| \left(\begin{array}{c}
^4\text{He} \\
r' \quad n'
\end{array} \right) \right\rangle \rightarrow W_{NN}(r, r')
\]

- Solving the non-local integro-differential coupled-channel equations for the N-⁴He relative motion: phase shifts, cross sections, polarization observables

Phase shifts in PRL101, 092501 (2008) and PRC79, 044606 (2009); arXiv:0901.0950; Cross sections and polarizations to be published
Figure 7. Calculated p^4He differential cross section (bottom panels) and analyzing power (top panels) for proton laboratory energies $E_p = 12, 14.32$ and 17 MeV compared to experimental data from Refs. 29, 30, 31, 32. The SRG-N^3LO NN potential with $\lambda = 1.85$ fm$^{-1}$ ($\lambda = 1.5$ fm$^{-1}$) was used, respectively.

Figure 8. Calculated inelastic 7Be(p,p')7Be($1/2^-$) cross section with indicated positions of the P-wave resonances (left figure). Calculated S-factor of the 3He(d,p)4He reaction compared to experimental data (right figure). Energies are in the center of mass. The SRG-N^3LO NN potential with $\lambda = 1.85$ fm$^{-1}$ ($\lambda = 1.5$ fm$^{-1}$) was used, respectively.
Ab initio scattering via trapping the system then analytically removing effects of the trap

Figure 3 The extracted results agreed with those from solving the Schroedinger equation in the continuum as illustrated for the 1S0 partial wave with the JISP16 NN interaction.

Analogous to Luescher’s method for extracting phase shifts from lattice-gauge results

Resonances in NCSM
A. Shirokov

n-A scattering phase shift at NCSM eigenergy E_λ is expressed through known function $f_N(E)$:

$$\delta = f_{N_{\text{max}}}(E_\lambda)$$

Varying $\hbar\Omega$ and hence E_λ, one can get resonance energy E_{res} and width Γ.

$$E_{\text{res}} = E_\lambda + \Delta$$

$$\tan f_{N_{\text{max}}}(E_\lambda) = \frac{\Gamma/2}{\Delta}$$

Good description of E_{res} and Γ if $f_{N_{\text{max}}}(E_\lambda)$ is around $\pi/2$, $3\pi/2$, etc.; if $f_{N_{\text{max}}}(E_\lambda)$ is around 0, π, 2π, etc., there is no hope to get resonance parameters with this approach.
Applications to Relativistic Quantum Field Theory
QED (new) and QCD (under development)

J. P. Vary, H. Honkanen, Jun Li, P. Maris, S. J. Brodsky, A. Harindranath, G. F. de Teramond, P. Sternberg, E. G. Ng and C. Yang,
“Hamiltonian light-front field theory in a basis function approach”,
Phys. Rev. C 81, 035205 (2010); arXiv nucl-th 0905.1411

H. Honkanen, P. Maris, J. P. Vary and S. J. Brodsky,
“Electron in a transverse harmonic cavity”,
Light cone coordinates and generators

\[M^2 = P^0 P_0 - P^1 P_1 = (P^0 - P^1)(P_0 + P_1) = P^+ P^- = KE \]
Initial QED problem
Electron in a transverse harmonic trap* mass squared spectra and anomalous moment

Invariant M^2 spectra

Without renormalization

With mass renormalization

Example of progress under SciDAC/UNEDF

13C Chiral NN+NNN
$N_{\text{max}} = 6$ Basis Space
Dimension = 38×10^6

~ Performance for 2007 PRL

Factor of 4 improvement in speed over V10-B05
Number nonzero me = 56×10^{10}
Millions of CPU hours - Nuclear ab initio + EDF(fits only)

<table>
<thead>
<tr>
<th>YEAR</th>
<th>INCITE</th>
<th>OTHER</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>37</td>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td>2009</td>
<td>30</td>
<td>34₁</td>
<td>64</td>
</tr>
<tr>
<td>2010</td>
<td>40</td>
<td>4</td>
<td>44</td>
</tr>
<tr>
<td>2011</td>
<td>43</td>
<td>15</td>
<td>58</td>
</tr>
<tr>
<td>2012</td>
<td>67²</td>
<td>8³</td>
<td>75</td>
</tr>
<tr>
<td>2013</td>
<td>109²</td>
<td>10³</td>
<td>119</td>
</tr>
</tbody>
</table>

₁Includes 30 from Jaguar “Early Science” Award
²Proposed based on current facilities
³Projected based on trends and current facilities

Additional notes:
TDSLDA used 70 million in 2010 not included above
NSF PRAC pending and NSF Blue Waters potential data storage needs to reach 200TB by 2013
Data Base Management System - Prototype
First step for Provenance
nuclear.physics.iastate.edu/info/

Nuclear Physics Server/
Any of the LC Facilities/
Any other machine

/projects/
(resource folder for files
containing Meta-Data)

DBM Code

Database
(Nuclear Physics Server at ISU)

Web Server

Client
(www user)
Observation

Ab initio nuclear physics maximizes predictive power & represents a theoretical and computational physics challenge

Key issues

How to achieve the full physics potential of *ab initio* theory? Can theory and experiment work more closely to define/solve fundamental physics problems?

Conclusions

We have entered an era of first principles, high precision, nuclear structure and nuclear reaction theory

Linking nuclear physics and the cosmos through the Standard Model is well underway

Pioneering collaborations between Physicists, Computer Scientists and Applied Mathematicians have become essential to progress
Challenges

- improve NN + NNN + NNNN interactions/renormalization
develop effective operators beyond the Hamiltonian
tests of fundamental symmetries
- achieve higher precision
 quantify the uncertainties - justified through simulations
 global dependencies mapped out
- proceed to heavier systems - breaking out of the p-shell
 extend quantum many-body methods
- evaluate more complex projectile-target reactions
- achieve efficient use of computational resources – improve
 scalability, load-balance, I/O, inter-process communications
- build a community aiming for investment preservation
 support/sustain open libraries of codes/data
 develop/implement provenance framework/practices